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Delivery challenges in urban areas

Intelligent parking systems

OpenPark: a real-time curb availability information
system

Real-time experimental design & data collection
Value of historical data




Freight parking demand

Delivering in urban areas is increasingly challenging

Freight parking supply
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Cruising for parking

Parking demand -> parking supply = cruising for parking

Cost of cruising for parking
e Internal cost: 30 seconds to 15.4 minutes of mean cruising time
e External cost: 7-74% share of traffic is cruising, 1h parked — 3.6 cars to cruise




Do commercial vehicles cruise for parking?

YES! Using GPS data from two different carriers we estimated that a parcel delivery
driver spends on average 5o minutes a day cruising for parking
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Intelligent parking systems

Intelligent parking systems use real-time curb availability information to improve
drivers’ parking experience and reduce parking externalities
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— Can parking availability information reduce delivery vehicles
cruising for parking and improve delivery efficiency?




Open
park

Real time &
predicted parking
occupancy of
CVLZs and PLZs
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Methodology

1) Deploy curb
proximity
Sensors in a
study area

2) Create a curb
availability

» information

system
OpenPark

3) Experiment

design

4) Collect data
& evaluate

" system




Study area
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Belltown neighbourhood, Seattle
Vendor: Fybr

273 magnetic field sensors
CVLZs + PLZs
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Evaluation

— Randomized experiment (treatment=app, control=no app.)

1) Created synthetic 2) Hired drivers to perform 3) Data collection &
delivery manifests deliveries w/o app analysis (app vs. no

app)
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Data collection

Observers rode along with drivers and collected GPS data

Performance metrics
e Cruising for parking time
e Cruising for parking distance
e Route time
e Route distance

Performed
e 133routes
e 495 deliveries

e 1771rips




Experimental design

e Hired 11 delivery drivers

e Each driver performed 3 different manifests (3 routes), each containing 15
delivery addresses

e Eachdriver performed at least 1 manifest using OpenPark for real-time curb
availability information, and 1 without

Drivers Manifests Total

M1 M2 M3 M4 MS Mo M7 M8 M9 M10 no.
routes

D1 No app | No app App 3

D2 App App No app 3

D3 App No app | No app 3

D4 App App No app 3

DJ| No app No app App 3

D6 Noapp | App No app 3

D7 App No app | App 3

D8 No app App No app 3

D9 No app App App 3

D10 App No app Noapp | 3

D11 App No app App 3

Total 3 3 3 5 3 3 5 4 2 2 33

no.

routes

No app = route was performed without access to OpenPark app
App = route was performed with access to OpenPark app




Results

e Estimated four mixed-effect random intercept regression models

o Each model contained a binary variable 2,,,, which takes value 1 whenever
OpenPark was used

e The estimated coefficients for 1, ,,, quantify the impact of using OpenPark on
the performance metrics
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Two options for using data:

Real-time data

Historic data
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What value does information on curb parking availability provide to urban delivery drivers and can it increase the cost
efficiency of delivery routes?

Approach
Real world Data Synthetic Data
How Use historic manifests and travel Use sampled manifests and
times estimated travel times
Goal  Case study to quantify including Evaluate contribution of
parking within route optimization environmental characteristics
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Real World Study
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Using cruising information to improve routes

INPUTS:

List of orders, TWSs, nodes
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Synthetic Study - Parameters of Interest
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Synthetic Study - ANOVA

Trip savings distributions under varying sample parameters

Significant variables: Tl TIlT 1~ T
. Number of stops . I B -- ' ' ]
 Cruising time ' + |1 | 1
variance 4 L 1L | 3 |17
. Travel distance R i ' toy 5
variance ol | : |
. Cruise time Variance

* Number of Stops

Best configuration: Few Stops, Homogeneous Shape, High Cruising delay variance

Mean saving per stop: -5.18 minutes per stop




Findings

e Variance of cruise time delays, the number of stops, and shape of the route all play a significant role
in determining savings

e Few Stops, Homogeneous Shape, High Cruising delay variance have largest mean drive time savings
of 39% and an average of -5.18 minutes per stop

e Highly variable: average drive time savings of 21.6% with savings up to 60% for some routes.

Population distribution for drive time savings
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