Chaire LOGISTICS CITY

Theme 1.1 Warehouse location patterns

Locational patterns of warehouses in 74 cities around the world, a comparative meta-analysis

Laetitia DABLANC, Laura PALACIOS-ARGÜELLO, Leise DE OLIVEIRA January 2020

Objectives of the research

To work on the Chair Logistics City's Topic 1.1

To provide a cleaned and more comprehensive database related to freight facilities in large metropolitan areas

To make comparative analyses regarding location factors related to logistics facilities and issues raised based on secondary sources

To provide novel elements in the study of locational patterns of freight facilities in metropolitan areas

To identify the status of freight in planning, land use and zoning policies

Case studies characterization

74 case studies 12 in Europe Finlande Islande Suède Russie Royau 55 in North oloane Ukraine America Allemagne Kazakhstan Mongolie Espagne éan Océan Turquie Corée du Sud fique Atlantique Afghanistan brd Irak Iran 3 in Nord Pakistan Algérie Égypte Libve Arabie Mexique Asia saoudite Inde Thailande Mali Niger Soudan Tchad • Nigeria enezuela Éthiopie Colo.nbie Kenya ----4 in South RD Congo Indonésie Papouasie-Nouvelle Tanzanie Brésil America Pérou Angola-Namibie Océan Madagascar Botswana Indien Océan Océan Australie Chili Atlantique Pacifique Sud Afrique du Sud Sud Argentine

74 case studies

Name of studied metro area	Country	
Albany MSA	USA	
Atlanta metro area	USA	
Austin MSA	USA	
Belo Horizonte	Brazil	
Berlin	Germany	
Birmingham MSA	USA	
Bogotá	Colombia	
Bordeaux MA	France	
Boston MSA	USA	
Brussels	Belgium	
Buffalo MSA	USA	
Calgary	Canada	
Cali	Colombia	
Charlotte MSA	USA	
Chicago	USA	
Chongqing	China	
Cincinnati MSA	USA	
Cleveland MSA	USA	
Columbus MSA	USA	
Dallas MSA	USA	
Dayton MSA	USA	
Denver MSA	USA	
Detroit MSA	USA	
Flevoland	Netherlands	
Gothenburg (MEA)	Sweden	

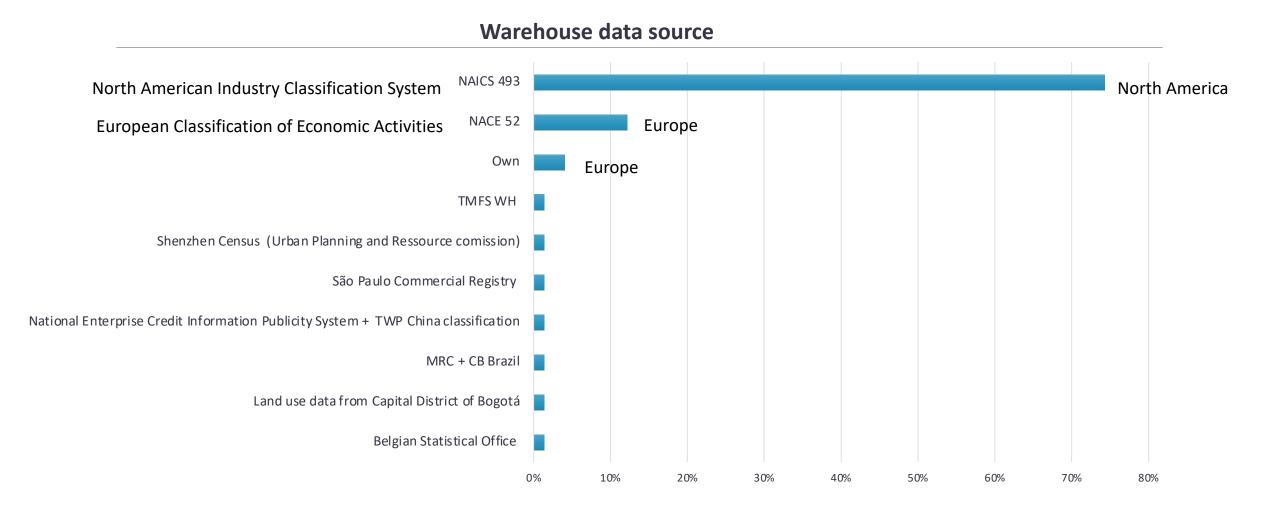
Country
Sweden
USA
USA
USA
Canada
USA
Canada
USA
USA
USA
Netherlands
USA
France
France
USA
USA
USA
USA

Name of studied metro area	Country	
Raleigh MSA	USA	
Richmond MSA	USA	
Rochester MSA	USA	
Salt Lake City MSA	USA	
San Antonio MSA	USA	
San Diego MSA	USA	
San Francisco MSA	USA	
Seatle	USA	
Shenzhen	China	
St. Louis MSA	USA	
Tampa MSA	USA	
The Randstad Region	Netherlands	
Tokio (TMA)	Japon	
Torono GGH	Canada	
Torono GTA	Canada	
Tucson MSA	USA	
Tulsa MSA	USA	
Utrecht	Netherlands	
Vancouver	Canada	
Virginia Beach MSA	USA	
Washington DC MSA	USA	
Winnipeg	Canada	
Zuid Holland (Rotterdam)	Netherlands	

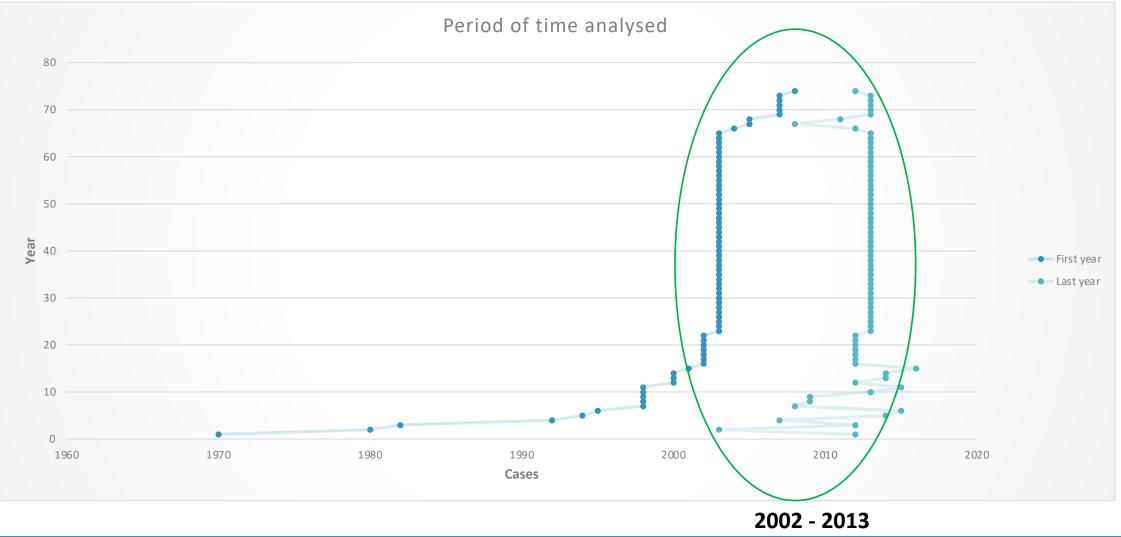
Key data retrieved

Key indicators

- Name of studied metro area
- Size of studied metro area (km2)
- Number of municipalities
- Type of metropolitan area: Polycentric/Monocentric
- Megaregion: Yes/Not
- Type of city/region: Gateway
- Type of land use control: Local/Metro/Regional
- Focused Study or general
- Surfaces area data availability: Yes/Not


- Name of warehouse data source
- Time period studied for logistics sprawl analysis
- Population (millions)
- Population density (inhabitants/km2)
- Number of warehouses
- Number of warehouses per million people
- Number of warehouses per 1000 km2
- Average size of warehouses (m2)
- Average distance of warehouses to centre of gravity (km)

- Change in population over the years (millions)
- % Change of the number of WH over the years
- Logistic sprawl: Change in average distance of WHs to centre of gravity (over the years) (km)
- Urban Rent Prices per year (EUR/m2)


- X
- Suburban Rent Prices per year (EUR/m2)

Warehouse data source

Years under study

98%

Data issues

♦ Databases are different: Ex. NAICs vs NACE codes (Type of logistic facilities → 3PL or warehouses insourced).

Periods of time analysed are different.

Regional areas into examination can be different.

Insufficient data regarding location factors (ex. land prices).

Hypotheses

Hypotheses: Static analysis

H1: There are more warehouses/pop in large and medium cities than in smaller cities

	Small cities	Medium and large cities
Average number of WH per million of people first year	74	99
Average number of WH per million of people last year	83	200

Type of cities:

- Small: <1M Inhabitants
- Medium: Between 1M and 5M Inhabitants
- Large: More than 5M Inhabitants

Hypotheses: Static analysis

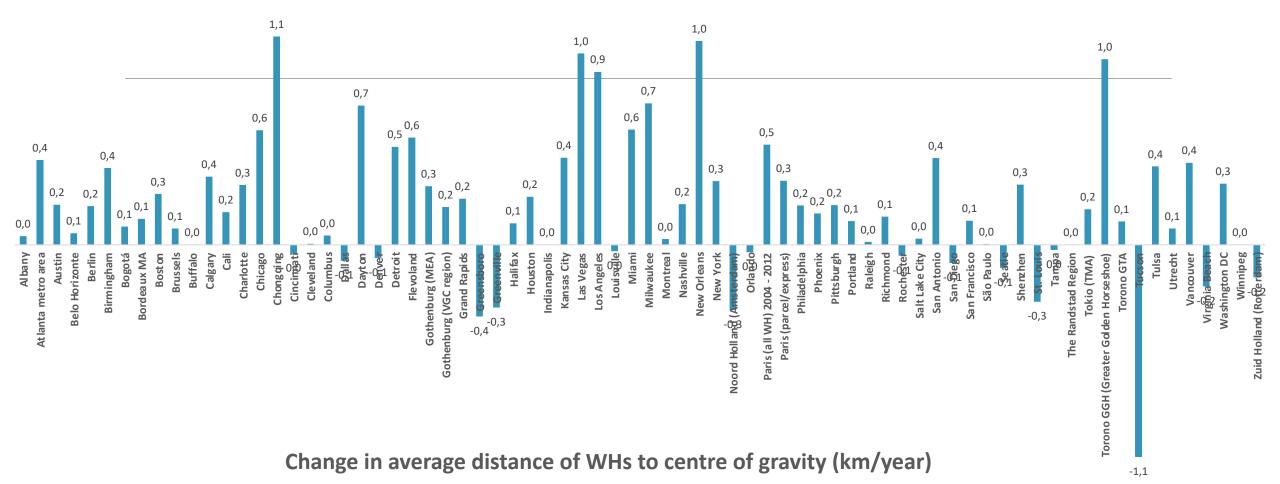
H2: There are more warehouses in global hub cities (or Gateways) than in « regular » cities

	Other cities	Gateways
Average number of WH first year	82	215
Average number of WH last year	87	547

H3: There are more warehouses in cities that belong to a Mega-regions than in « regular » cities.

	Other cities	Mega-regions
Average number of WH of people first year	112	198
Average number of WH of people last year	334	444

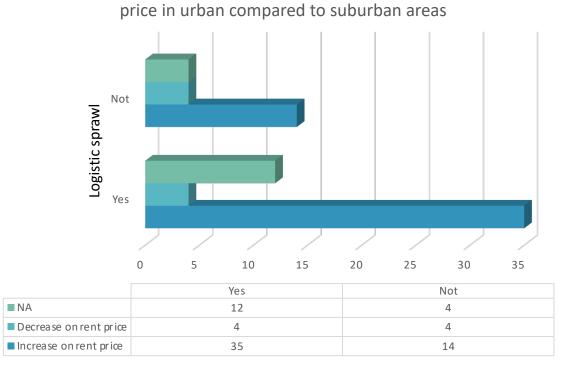
Hypotheses: Dynamic analysis


H4: The increase in the number of warehouses over time is larger in medium and large cities than in smaller cities

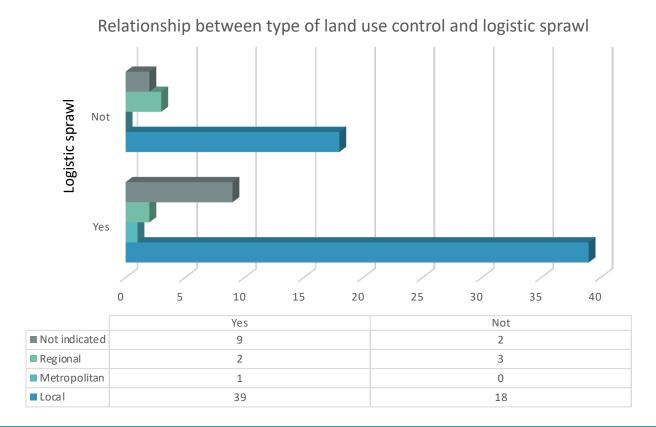
	Small cities	Medium and large cities
Average increase in the number of WH over the time	35%	59%

H5: The increase in the number of logistics facilities over time is positively related to the importance of the role of global logistics hub (or Gateways) played by an urban area

	Other cities	Gateways
Average increase on the number of WH over the time	15%	73%


Hypotheses: Logistic sprawl

Hypotheses: Complex analyses


H6: Logistics sprawl is positively related to the differential in land/rent values for logistics land uses between suburban and central areas in an urban region.

Relationship between logistic sprawl and increase of rent

Hypotheses: Complex analyses

H7: Logistics sprawl is negatively related to the degree of regional logistics land use control.

Key conclusions

Hypotheses	Validated	Conclusion
H1	Yes	There are more warehouses/pop in medium and large cities than in smaller cities.
H2	Yes	There are more WHs in global hub cities (or Gateways) than in « regular » cities
Н3	Yes	There are more warehouses in cities that belong to a Mega-regions than in « regular » cities.
H4	Yes	The increase in the number of warehouses over time is larger in medium and large cities than in smaller cities
Н5	Yes	The increase in the number of logistics facilities over time is positively related to the importance of the role of global logistics hub (or Gateways) played by an urban area.
H7	Yes	Logistics sprawl <u>could be</u> positively related to the differential in land/rent values for logistics land uses between suburban and central areas in an urban region.
H8	Not possible	Logistics sprawl is <u>not always</u> negatively related to the degree of regional logistics land use control.