
#### Chaire LOGISTICS Cuniversité Gustave Eiffel

### Autonomous vehicles' potential for e-commerce deliveries

Heleen Buldeo Rai

Logistics City Chair Univ Gustave Eiffel



#### Presentation of the Logistics City Chair

### Composition of the Chair



**Laetitia Dablanc** Director of the Chair



Heleen Buldeo Rai Postdoctoral researcher since 2020 Theme 2, booklet 2



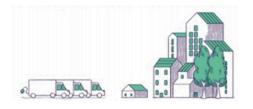
#### Matthieu Schorung

Postdoctoral researcher since 2021 Theme 1, booklet 3








Chaire

LOGISTICS

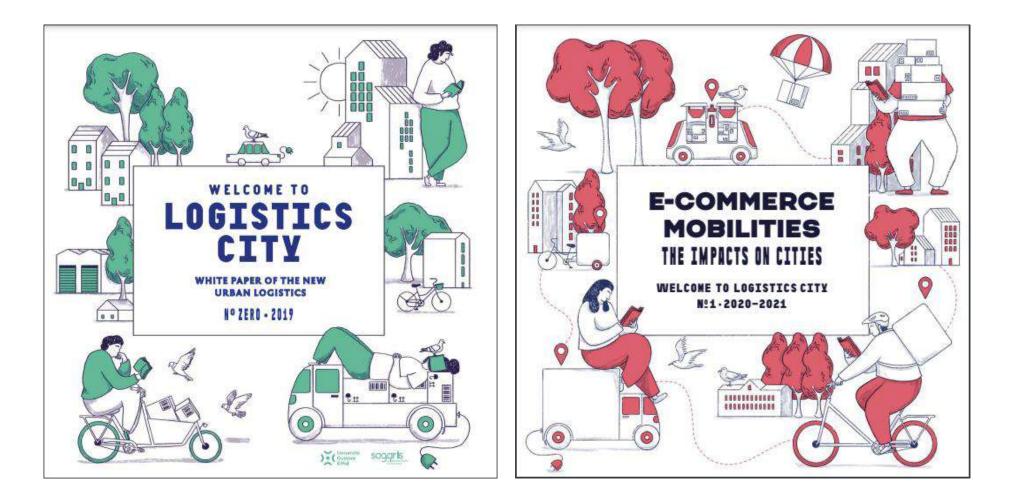
CITY

**Université** Gustave Eiffel

### Scientific programme



**Theme 1: Urban logistics real estate,** new economic models for metropolitan logistics real estate, strategies for the implementation of logistics buildings in large metropolises


Theme 1.1: Logistics sprawl and urban logistics: analysis of territorial dynamics linked to the evolution of the location of logistics activities, at the "macro" level

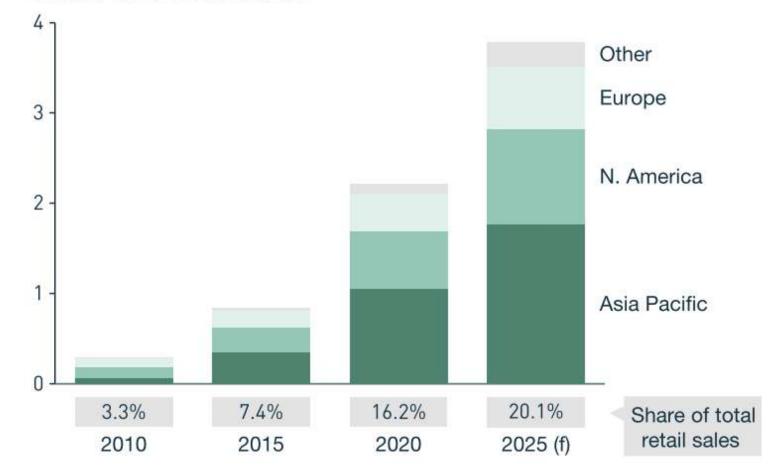
Theme 1.2: **Urban logistics planning**: analysis of public policies, the history of the production of the first buildings, the economic paradox of urban logistics and regulatory obstacles, at the "micro" level



**Theme 2: Trends and new practices** in consumption, production and distribution impacting on urban logistics and warehousing of the future, in a prospective vision

#### Booklets "Welcome to Logistics City"

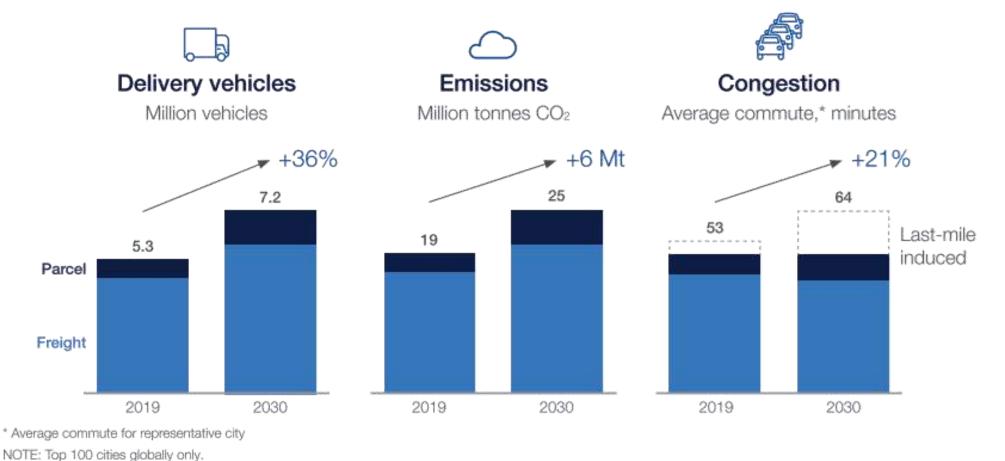



#### E-commerce mobilities observatory

Chaire CQVID-19 Contents Chair Homepage Definition Stakeholders Mobilities Warehousing OGISTICS TTV Welcome to the E-COMMERCE MOBILITIES BSER

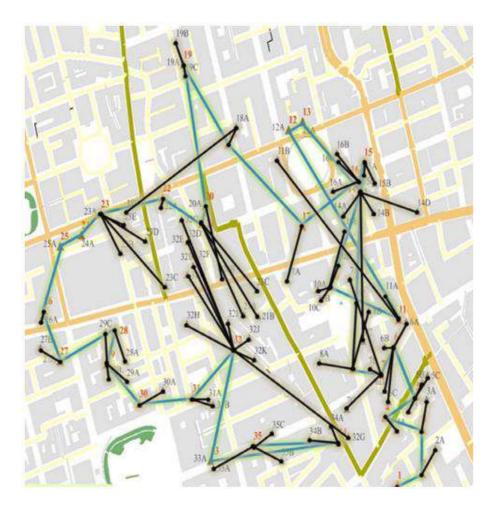
### Autonomous vehicles' for e-commerce deliveries: what's the buzz about?

## Double-digit e-commerce growth in the past decade, accelerated by the pandemic


Global e-commerce sales, €tn



Reference: International Post Corporation, 2021


## E-commerce deliveries generate significant externalities, especially in cities

2030 base case scenario



Reference: Deloison et al., 2020

## E-commerce deliveries in cities are largely inefficient: example from London



Vehicle round statistics for parcel deliveries (n = 25)

| Vehicle round statistic                        | Mean    | Unit         |
|------------------------------------------------|---------|--------------|
| Round duration, of which:                      | 7.3     | hour         |
| - vehicle parked                               | 62%     | %            |
| Driving distance within delivery area          | 11.9    | km           |
| Average vehicle speed within delivery area     | 7.0     | kph          |
| No. of items delivered and (collected)         | 118 (9) | #            |
| Total walking distance                         | 7.94    | km           |
| Average walking distance per customer          | 105     | m/customer   |
| No. of customers served                        | 72      | #            |
| No. of parking stops, of which:                | 37      | #            |
| - proportion on street                         | 95%     | %            |
| Time taken to deliver or collect (once parked) | 4.1     | min/customer |

## Autonomous vehicle technology as solution to externalities and inefficiencies?

### Get ready for a world where autonomous vehicles deliver 80 percent of parcels

**Delivery models** 

|     | arching product<br>pories              | Rural areas with low to<br>average density <sup>2</sup>        | Urban areas with average<br>density <sup>3</sup>                 | Urban areas with high<br>density <sup>4</sup> |
|-----|----------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|
| X2C | Regular parcel <sup>1</sup>            |                                                                |                                                                  |                                               |
|     | High reliability,<br>e.g., time window | 2:2 Drones (same<br>day, if fulfilment                         | 2.1 AGVs with lockers (e-grocery with<br>today's delivery model) |                                               |
|     | Same day                               |                                                                |                                                                  |                                               |
|     | Instant                                | Fulfillment (likely) not possible<br>at economical cost levels |                                                                  | 2.3 Bike couriers<br>(or droids)              |
| 828 | 328                                    |                                                                | 2.4 Today's delivery model                                       |                                               |

## Autonomous vehicle technology as solution during a health crisis?



A self-driving vehicle delivers lunch boxes to workers in Pingshan District in Shenzhen.

Postmates delivery robots deliver food in Los Angeles.

Colombian delivery app Rappi is testing robotic deliveries in Medellin.

A self-driving Starship robot drops off deliveries in Emerson Valley, Britain.

What is the state of practice and future potential of autonomous vehicles for e-commerce delivery in cities?

### Methodological approach combining desk and field research

#### Meta-analysis of the literature on autonomous e-commerce deliveries Including white papers; trend reports; newspaper articles; press releases; and scientific • articles, more than one hundred references Desk March until September 2020 research ٠ Information on company; vehicle; and test, based on approximately seventy autonomous ٠ e-commerce delivery initiatives **Questionnaire among transport companies** Panel of transport companies, ten completed surveys July 2020 until September 2020 ٠ Information on level of interest; perceived benefits and obstacles; and perceived impact of ٠ the health crisis Field Interviews with a transport company and autonomous vehicle developers research Four semi-structured expert-interviews ٠

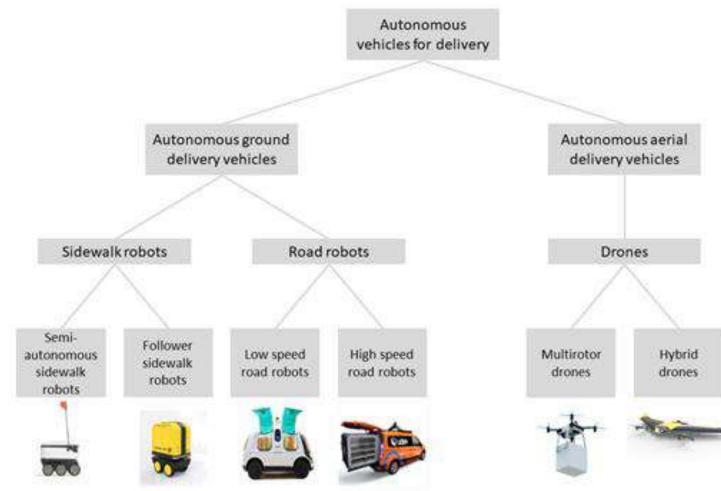
- August 2020 until September 2020
- Information on state of practice, experiences and expectations; vehicle design; regulation, costs and infrastructure conditions; perceived benefits and obstacles; and perceived impact of the health crisis

### Methodological approach combining an international context and a French case-study

#### Meta-analysis of the literature on autonomous e-commerce deliveries

- Including white papers; trend reports; newspaper articles; press releases; and scientific articles, more than one hundred references
- March until September 2020
- Information on company; vehicle; and test, based on approximately seventy autonomous e-commerce delivery initiatives

#### **Questionnaire among transport companies**


- Panel of transport companies, ten completed surveys
- July 2020 until September 2020
- Information on level of interest; perceived benefits and obstacles; and perceived impact of the health crisis

#### Interviews with a transport company and autonomous vehicle developers

- Four semi-structured expert-interviews
- August 2020 until September 2020
- Information on state of practice, experiences and expectations; vehicle design; regulation, costs and infrastructure conditions; perceived benefits and obstacles; and perceived impact of the health crisis

Overview of international developments

Overview of developments in France Typology of autonomous e-commerce delivery vehicles based on differences in infrastructure, speed, automation level, size and carrying capacity



Reference: Touami, 2020

Multirotor (quadcopters, hexacopters, octocopters) and hybrid drones (wings)

Infrastructure: air Speed: 60 km/h for multirotor drones, 120 km/h for hybrid drones Automation: between level 3 and 4, able to make some decisions but human supervision necessary Carrying capacity: up to 5 kg for multirotor drones,

up to 25 kg for hybrid drones



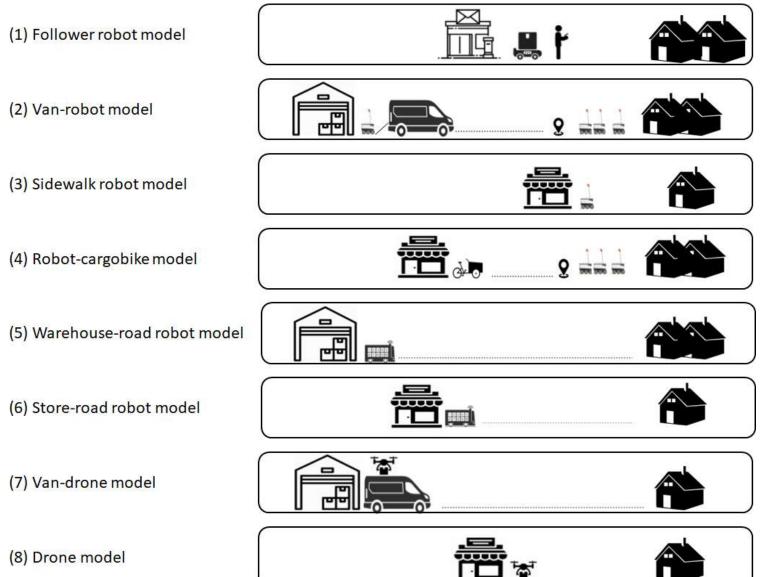
### Semi-autonomous sidewalk robots

Infrastructure: sidewalks Speed: max 6 km/h Automation: overall level 3, travel autonomously but are supervised, <u>Serve Robotics recently became first</u> to commercially launch level 4 sidewalk robots (Auto Futures, 2022) Carrying capacity: between 10 and 40 kg, up to a maximum of 350 kg in a few cases



### Follower sidewalk robots

Infrastructure: sidewalks Speed: same as assisted person Automation: level 3 Carrying capacity: up to 1000 kg




### Low and high-speed road robots

Infrastructure: roads Speed: 40 km/h for low-speed road robots, 80 km/h for high-speed road robots Automation: level 4 Carrying capacity: similar to regular vans



### Typology of autonomous e-commerce delivery scenarios



Reference: Touami, 2020

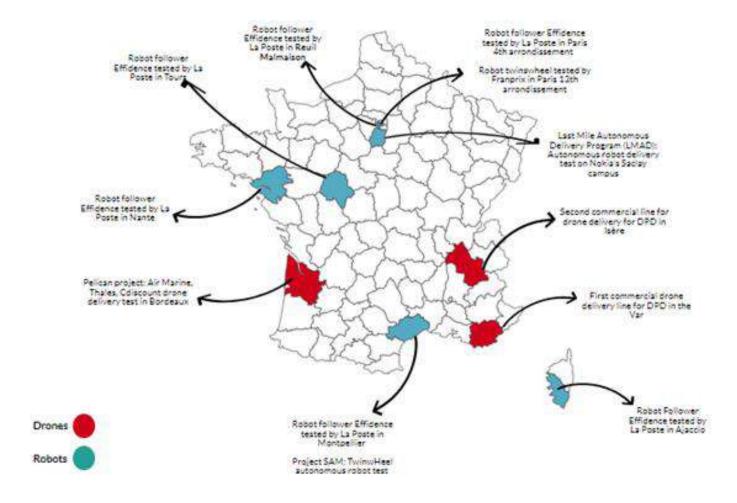
#### The French autonomous delivery vehicle market



Effidence follower robot



TwinswHeel follower robots




Sterela sidewalk robot



Valeo road robot

## Autonomous delivery vehicle tests and applications in France, mostly by La Poste, none during lockdown



## Autonomous delivery vehicle tests during lockdown elsewhere, especially in the US and China



Zipline in North Carolina (Bright, 2020).



White Rhino Auto in Wuhan (Gong, 2019).

| Country          | Company                                 | Vehicle type             | City                            | Delivery scenario             | Product type                                   |
|------------------|-----------------------------------------|--------------------------|---------------------------------|-------------------------------|------------------------------------------------|
| United<br>States | Starship Technologies                   | Sidewalk robots          | Tempe, Washington DC,<br>Irvine | Sidewalk robot model          | Prepared meals, groceries                      |
|                  | Nuro                                    | Road robots              | Houston, Bay Area, San<br>Mateo | Store-road robot model        | Prepared meals, groceries, medical<br>supplies |
|                  | Kiwi Campus                             | Sidewalk robots          | Berkeley, San Jose              | Sidewalk robot model          | Prepared meals, groceries, medical<br>supplies |
|                  | Pony.ai                                 | Road robots              | Fremont, Irvine                 | Warehouse-road robot<br>model | Prepared meals, groceries                      |
|                  | Cruise                                  | Road robots              | San Francisco                   | Store-road robot model        | Groceries                                      |
|                  | Postmates                               | Sidewalk robots          | San Francisco, Los Angeles      | Sidewalk robot model          | Prepared meals                                 |
|                  | Zipline                                 | Drones                   | North Carolina                  | Drone model                   | COVID-19 tests, medical supplies               |
|                  | Flytrex                                 | Drones                   | Grand Forks, North Dakota       | Drone model                   | Groceries                                      |
|                  | Waymo                                   | Road robots              | Bay Area                        | Store-road robot model        | Parcels                                        |
|                  | Wing                                    | Drone                    | Christiansburg, Virginia        | Drone model                   | Groceries                                      |
|                  | Amazon Scout                            | Sidewalk robots          | Snohomish, Irvine               | Sidewalk robot model          | Parcels                                        |
|                  | Navya                                   | Shuttle                  | Jacksonville                    | Store-road robot model        | Prepared meals, medical supplies               |
|                  | Refraction AI                           | Road robots              | Ann Arbor                       | Store-road robot model        | Prepared meals, groceries                      |
|                  | Optimus Ride                            | Road robots              | The yard, Washington DC         | Store-road robot model        | Prepared meals                                 |
| ngland           | Starship Technologies                   | Sidewalk robots          | Milton Keynes                   | Sidewalk robot model          | Prepared meals, groceries                      |
| otland           | Wingcopter                              | Drones                   | Isle of Wight, Isle of Mull     | Drone model                   | Medical supplies                               |
|                  | Skyport                                 | Drones                   | Argyll and Bute                 | Drone model                   | Medical supplies                               |
| eland            | Manna Aero                              | Drones                   | Moneygall                       | Drone model                   | Medical supplies, basic necessities            |
| inland           | LMAD - Last Mile Autonomous<br>Delivery | Sidewalk robots          | Helsinki                        | Sidewalk robot model          | Groceries                                      |
| hina             | Unity Drive Innovation                  | Sidewalk and road robots | Zibo, Suzhou, Shenzhen          | Store-road robot model        | Groceries                                      |
|                  | White Rhino Auto                        | Road robots              | Wuhan                           | Store-road robot model        | Prepared meals, medical supplies               |
|                  | Neolix                                  | Road robots              | Wuhan                           | Store-road robot model        | Prepared meals, groceries, medical<br>supplies |
|                  | Neolix                                  | Road robots              | Wuhan                           | Warehouse-road robot<br>model | Parcels                                        |
|                  | JD Logistics                            | Road robots              | Wuhan                           | Store-road robot model        | Groceries, parcels                             |
|                  | JD Logistics                            | Drones                   | Wuhan                           | Drone model                   | Medical supplies                               |
|                  | Meituan Dianping                        | Sidewalk robots          | Beijing                         | Sidewalk robot model          | Groceries                                      |
|                  | Meituan Dianping                        | Road robots              | Beijing                         | Store-road robot model        | Groceries                                      |
|                  | Antwork Network Technology              | Drones                   | Beijing                         | Drone model                   | Medical supplies                               |
|                  | ZhenRobotics                            | Sidewalk robots          | Beijing                         | Sidewalk robot model          | Groceries                                      |
| anada            | Tiny Mile                               | Sidewalk robots          | Toronto                         | Sidewalk robot model          | Prepared meals                                 |
|                  | Drone Delivery Canada                   | Drones                   | Georgina Island                 | Drone model                   | Medical supplies                               |
| tessia           | Yandex.Rover                            | Sidewalk robots          | Moscow                          | Sidewalk robot model          | Parcels                                        |
| wanda            | Zipline                                 | Drones                   | Kigali                          | Drone model                   | COVID-19 tests, medical supplies               |
| hana             | Zipline                                 | Drones                   | Accra, Kumasi                   | Drone model                   | COVID-19 tests, medical supplies               |
| Australia        | Wing                                    | Drones                   | Canberra, Logan                 | Drone model                   | Prepared meals, medical supplies               |
| Colombia         | Kiwi Campus                             | Sidewalk robots          | Medellin                        | Sidewalk robot model          | Prepared meals                                 |



Starship in Mountain View (Forestieri, 2020).

# Three developments facilitated the testing and implementing of autonomous delivery vehicles

#### (1) Easing of regulation, examples:

- Waiver of Zipline by the Federal Aviation Administration to use drones for medical supplies in North Carolina (Bright, 2020).
- Permission for Nuro to continue testing its R2 road robots in California (Hawkins, 2020).
- Authorisation of White Rhino Auto to supply medical staff in Wuhan (Gong, 2019).
- Agreement by Mountain View's city council for Starship to launch its commercial services (Forestieri, 2020).

#### (3) Repurposing of activities towards delivery, example:

• Pony.ai, Waymo and Navya repurposed their autonomous vehicles from passenger transport and taxi activities.

#### (4) Extending of investments funds, example:

- Waymo signed a partnership with Walmart and UPS after repurposing its activities to goods delivery, extending its funding round of \$2.25 billion in March with an additional \$750 million in May from several new investors.
- Over a few months, investors injected at least \$6 billion into autonomous delivery vehicle companies (Lienert & Lanhee Lee, 2020).

## Several barriers for testing and implementing of autonomous delivery vehicles in France

**Urban design characteristics**, including of university campuses, considered more appropriate in the US.

**Investment culture**, US and Asian countries considered "more open to technology" and "more willing to invest in order to broaden the field of experimentation".

#### Focus on personal vehicle automation, instead of goods vehicles.

**Regulation**, and specifically the lack of transparency on authorisations in charge of the regulation.

Vehicle unit costs, high due to "high quality and small scale" local production (\$5,500 and \$2,250 (Starship estimates) vs €45,000 and €65,000 (TwinswHeel estimates)).

**Dual role of public opinion**, innovation vs loss of jobs/human contact.

### Future potential of autonomous e-commerce delivery in France?



Estimation: up to a quarter of the e-commercevolume delivered autonomously within ten years.

#### Thank you! Questions?

Contact me at heleen.buldeo-rai@univ-eiffel.fr

This research has been published in Research in Transportation Business & Management: <u>https://doi.org/10.1016/j.rtbm.2021.100774</u>

It is based on the Master thesis of Sabrina Touami (in French): https://www.lvmt.fr/wp-content/uploads/2020/11/TOUAMIm%C3%A9moire-version-chaire.pdf

An overview of autonomous e-commerce delivery initiatives is published on the Logistics City Chair website: <u>https://www.lvmt.fr/wp-</u> content/uploads/2020/11/TOUAMI-m%C3%A9moire-annexe.pdf).

More information and resources: <u>https://www.lvmt.fr/en/chaires/logistics-city/</u>

#### Transport companies sample of online questionnaire

| Companies     | Size                      | Product type                     | Segment<br>type | Activity type |
|---------------|---------------------------|----------------------------------|-----------------|---------------|
| Company 1     | Large                     | Parcels, food                    | B2C and<br>B2B  | In-house      |
| Company 2     | Large                     | Parcels,<br>medication           | B2C and<br>B2B  | Subcontracted |
| Company 3     | Large                     | Parcels, cargo                   | B2B             | Both          |
| Company 4     | Large                     | Prepared meals,<br>food          | B2C and<br>B2B  | Both          |
| Company 5     | Small-to-<br>medium sized | Parcels, prepared<br>meals, food | B2C and<br>B2B  | In-house      |
| Company 6     | Small-to-<br>medium sized | Parcels, prepared<br>meals, food | B2C and<br>B2B  | In-house      |
| Company 7     | Small-to-<br>medium sized | Parcels, prepared<br>meals, food | B2C and<br>B2B  | In-house      |
| Company 8     | Small-to-<br>medium sized | Parcels,<br>medication           | B2C and<br>B2B  | In-house      |
| Company 9     | Small-to-<br>medium sized | Medication,<br>prepared meals    | B2C and<br>B2B  | Subcontracted |
| Company<br>10 | Small-to-<br>medium sized | Medication                       | B2C             | In-house      |

### Autonomous vehicle developers of semi-structured expertinterviews

| Company                                    | Activity                                                                                                                                                                                                                                      | Interview information                                                                        |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Sterela                                    | Engineering and services<br>company. Developed a range<br>of sidewalk delivery robots:<br>Cargobot mule, Cargobot<br>City, CargoBot XS.                                                                                                       | Telephone interview on<br>August 26th, 2020 with the<br>Innovation & Development<br>manager. |
| TwinswHeel                                 | Start-up specialising in the<br>design of sidewalk delivery<br>robots. Developed three<br>robots with different load<br>capacities: TH03, TH05,<br>TH05 cargo.                                                                                | Telephone interview on<br>August 27th, 2020 with the<br>Founder.                             |
| LMAD - Last Mile<br>Autonomous<br>Delivery | Software company that<br>developed a platform to<br>manage and optimise fleets<br>of autonomous vehicles for<br>delivery. Carried out tests in<br>France and Finland with<br>robots from the Finnish<br>autonomous vehicle<br>developers GIM. | TEAMS interview on<br>September 15th, 2020 with<br>the CEO.                                  |

## Tests and applications of autonomous delivery vehicles in France

| Company                                       | Vehicle<br>type                | Type of<br>initiative                      | Location                                                       | Timing                         |
|-----------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------------------------|--------------------------------|
| TwinswHeel                                    | Follower<br>sidewalk<br>robots | Test with La<br>Poste                      | Montpellier                                                    | End of<br>2020                 |
| TwinswHeel                                    | Follower<br>sidewalk<br>robots | Test with<br>supermarket<br>chain Franprix | Paris                                                          | April 2019                     |
| DPD                                           | Drone                          | Commercial<br>line                         | Isère                                                          | 2019                           |
| LMAD - Last<br>Mile<br>Autonomous<br>Delivery | Sidewalk<br>robots             | Test with GIM<br>Robotics                  | Paris                                                          | 2019                           |
| Effidence                                     | Follower                       | Test with La                               | Rueil                                                          | Between                        |
|                                               | sidewalk<br>robots             | Poste                                      | Malmaison,<br>Paris, Ajaccio,<br>Montpellier,<br>Nantes, Tours | April 2018<br>and July<br>2019 |
| Air Marine                                    | Drone                          | Test with<br>Cdiscount                     | Bordeaux                                                       | 2018                           |
| DPD                                           | Drone                          | Commercial<br>line                         | Var                                                            | 2016                           |