Relationships among urban characteristics, real estate market and spatial patterns of warehouses in different geographic contexts

Renata Oliveira | Splott/UGE seminar | 10/05/2021
Authors

Renata Oliveira under supervision of Laetitia Dablanc and Matthieu Schorung
Research Hypothesis

(Dablanc, L., 2019)

Logistics sprawl is higher in cities with a high differential between central and suburban land/rent values.

The location of warehouses is closely related to land/rent values of logistics facilities.
Objectives

Chair Logistics City Theme 1 objective: Compare spatial patterns of warehouses overtime and in different cities around the world connecting urban form to the evolution in the number and location of logistics facilities (Dablanc, L., Palacios, L., 2019)

Focus of this research: Identify the relationships between urban attributes, logistics real estate, and logistics facilities' spatial structure focusing on logistics sprawl
Methodological approach

Data collection

\[\text{Spatialization and standardization of data} \]

\[\text{Disaggregated data in hexagon bins} \]

\[\text{Spatial descriptive statistics} \]

\[\text{Exploratory data analysis} \]

\[\text{Spatial pattern index} \]

\[\text{Urban Centrality Index} \]

\[\text{Monocentricity/Polycentricity} \]

\[\text{Metropolitan areas} \]

\[\text{Aggregated information for metropolitan areas} \]

\[\text{Cluster} \]

\[\text{Urban Typology} \]

\[\text{Spearman Correlation} \]

\[\text{Correlation} \]

\[\text{Chi-square} \]

\[\text{Dependency} \]
Methodological approach

Diagram showing the methodological approach with steps including:
- Data collection
- Spatialization and standardization of data
 - Spatial descriptive statistics
 - Univariate LISA
 - Urban Centrality Index
- Disaggregated data in hexagon bins
- Exploratory data analysis
- Spatial pattern index
- Monocentricity/Polycentricity
- Metropolitan areas
- Aggregated information for metropolitan areas
 - Cluster
 - Spearman Correlation
 - Chi-square
 - Dependency

Further reading:
retaoliveira.github.io/places
Methodological approach

Spatial descriptive statistics

Urban Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower outlier</td>
<td>Suburban</td>
</tr>
<tr>
<td>< 95 %</td>
<td>Suburban</td>
</tr>
<tr>
<td>>= 5 %</td>
<td>Central</td>
</tr>
<tr>
<td>Upper outlier</td>
<td>Central</td>
</tr>
</tbody>
</table>

Warehouse location and rent prices

<table>
<thead>
<tr>
<th>Classification</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower extreme</td>
<td>Extremely low</td>
</tr>
<tr>
<td>Lower outlier</td>
<td>Very low</td>
</tr>
<tr>
<td>< 25 %</td>
<td>Low</td>
</tr>
<tr>
<td>25 % - 50 %</td>
<td>Medium</td>
</tr>
<tr>
<td>50 % - 75%</td>
<td>Medium</td>
</tr>
<tr>
<td>> 75 %</td>
<td>High</td>
</tr>
<tr>
<td>Upper outlier</td>
<td>Very high</td>
</tr>
<tr>
<td>Upper extreme</td>
<td>Extremely high</td>
</tr>
</tbody>
</table>
Methodological approach

Spatial pattern index

Univariate Global and Local Moran's I - spatial autocorrelation.

LISA map generated considering a 0.05 level of significance and a Monte Carlo simulation (2000 permutations).
Methodological approach

Urban Centrality Index (UCI)*

Computed considering:

- **location coefficient** - measure the unequal distribution factor of the urban intensity index within each urban area
- **spatial separation index**, namely Venables index, which aims at evaluating the spatial distribution of spatial patterns of activities; and
- **proximity index**, which is the normalization of the Venables index considering the respective maximum attainable value. The UCI values range from 0 to 1, where 0 the most polycentric area and 1, maximal monocentricity.

*Pereira (2013)
Methodological approach

Dataset containing all hex bins for all the metropolitan regions investigated

- Number of warehouses in each hex bin
- Average warehouse price in each hex bin
- Urban intensity index
- Spatial cluster identification for urban intensity index and warehouse count and rent prices
- Classification and outlier’s identification for warehouse count and rent prices
Methodological approach
Methodological approach

Dataset containing the summary indicators for each metropolitan region

- Global Moran’s I index for urban activity index
- Global Moran’s I index for warehouse spatial distribution
- Global Moran’s I index for warehouse rent prices distribution
- UCI for urban activity index
- UCI for warehouse location
- Price differential for central and suburban warehouses
- Population (t0 and t1) (Dablanc, L; Palacios, L., 2019)
- Metropolitan territorial area (Dablanc, L; Palacios, L., 2019)
- Number of municipalities (Dablanc, L; Palacios, L., 2019)
- Number of warehouses (t0 and t1) (Dablanc, L; Palacios, L., 2019)
- Average distance to barycenter (t0 and t1) (Dablanc, L; Palacios, L., 2019)
- Yearly logistics sprawl (Dablanc, L; Palacios, L., 2019)
- The proportion of HH, HL, LH and LL clusters for the urban activity index, warehouse location and warehouse price.
Methodological approach

Typology - K-means cluster analysis

Can we gather all metropolitan regions into one comparative analysis?

Dependency of warehouse location and prices on urban activity - Chi-square independent

Do warehouse location and prices depend on urban activity?

Correlation among continuous variables - Spearman correlation

Is logistics sprawl related to warehouse rental prices?
Average warehouse rent price (US$/m²/year) vs. Metropolitan area.
Sprawl x differential warehouse rent prices

Sprawl per year in km

Percentual Differentiation of warehouse rent prices

quad1
quad2
quad3
quad4
Quadrant for differential warehouse rent prices (central and suburban) and logistics sprawl
Sprawl per year x differential population (2015 - 2000)
Assumption: FOUR CLUSTERS

Results - to be reviewed
Results

Metropolitan areas for comparison - To be reviewed from cluster analysis

- albany
- atlanta
- austin
- belo_horizonte
- berlin
- bordeaux
- boston
- buffalo
- charlotte
- columbus
- grand_rapids
- kansas_city
- las_vegas
- los_angeles
- miami
- milwaukee
- montreal
- nashville
- new_york
- paris
- pittsburg
- raleigh
- salt_lake_city
- san_franisco
- sao_paulo
- toronto
- vancouver
- washington
Examples of the representation

Referential for the urban classification

retaoliveira.github.io/places
Futher steps

- Conclude classification of metropolitan areas
- Compare different classes of metropolitan areas - sprawl x urban attributes - scale regarding the comparison between European and North American metros
- Dashboard
- Paper
Research contributions

Methodological: innovative framework for comparing metropolitan regions considering the spatial pattern of logistics facilities and urban characteristics.

Reproducibility

Public Policy: Can induce local and regional public authorities to develop more effective public policy addressed to logistics land use and transportation planning. Coordinating these dimensions is essential to support urban logistics stakeholders' needs, cities' livability, and the real estate market.
References

retaoliveira.github.io/places
Find me at...

@retaoliveira
@retaoliveira
retaoliveira.github.io/places
renataoliveira@cefetmg.br