

Theme 1.1 Warehouses location patterns

Locational patterns of warehouses in 78 cities around the world, a comparative meta-analysis

Laetitia DABLANC, Matthieu SCHORUNG, Renata de OLIVEIRA, Laura PALACIOS-ARGÜELLO, Leise de OLIVEIRA, Paula YAGHI October 2023

Objectives of the research

- To identify relationships between the location of warehouses and urban forms
- To provide a comprehensive database related to warehouses in large metropolitan areas around the world
- To make comparative analyses regarding location factors related to warehouses
- To provide novel methodological elements in the study of locational patterns of warehouses in metropolitan areas
- To identify the status of freight in planning, land use and zoning policies

Case studies characterization

78 case studies

55 in North America(Andriankaja

(Andriankaja, 2014; Dablanc et al., 2014; Dablanc, Ross, 2012; Dubie et al., 2020; Kang, 2020; Woudsma et al., 2016; Woudsma,

4 in South
America (Guerin ←
et al., 2021;
Daraviña,
Suescún, 2016;
Oliveira et al.,
2018)

Jakubicek, 2020)

12 in Europe (Heitz, Dablanc, 2015; Heitz et al., 2020; Heitz, 2017; Klauenberg et al., 2018; Strale, 2020)

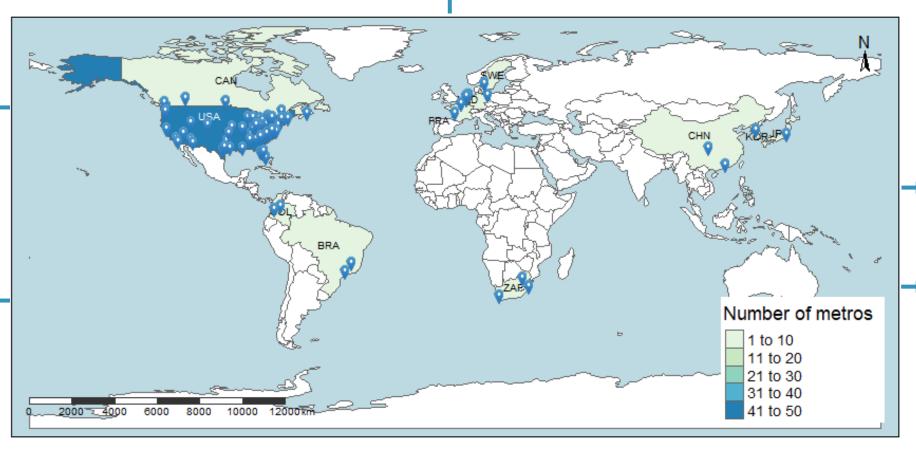
4 in Asia (Li

et al., 2020;

Kang, 2022;

Xiao, 2017;

Yuan, Zhu,


3 in Africa

2019)

(Trent,

Joubert,

2022)

78 case studies

Name of studied metro area	Country
Albany MSA	USA
Atlanta metro area	USA
Austin MSA	USA
Belo Horizonte	Brazil
Berlin	Germany
Birmingham MSA	USA
Bogotá	Colombia
Bordeaux MA	France
Boston MSA	USA
Brussels	Belgium
Buffalo MSA	USA
Calgary	Canada
Cali	Colombia
Cape Town	South Africa
Charlotte MSA	USA
Chicago	USA
Chongqing	China
Cincinnati MSA	USA
Cleveland MSA	USA
Columbus MSA	USA
Dallas MSA	USA
Dayton MSA	USA
Denver MSA	USA
Detroit MSA	USA
eTahkwini	South Africa
Flevoland	Netherlands
Gauteng	South Africa

Name of the diad or the con-	C
Name of studied metro area	
Gothenburg (MEA)	Sweden
Gothenburg (VGC region)	Sweden
Grand Rapids MSA	USA
Greensboro MSA	USA
Greenville MSA	USA
Halifax	Canada
Houston MSA	USA
Indianapolis MSA	USA
Kansas City MSA	USA
Las Vegas MSA	USA
Los Angeles	USA
Louisville MSA	USA
Miami MSA	USA
Milwaukee MSA	USA
Montreal	Canada
Nashville MSA	USA
New Orleans MSA	USA
New York MSA	USA
Noord Holland (Amsterdam)	Netherlands
Orlando MSA	USA
Paris (all WH) 2004 - 2012	France
Paris (parcel/express)	France
Philadelphia MSA	USA
Phoenix	USA
Pittsburgh MSA	USA
Portland MSA	USA

Name of studied metro area	Country
Raleigh MSA	USA
Richmond MSA	USA
Rochester MSA	USA
Salt Lake City MSA	USA
San Antonio MSA	USA
San Diego MSA	USA
San Francisco MSA	USA
Seatle	USA
Seoul MSA	South Korea
Shenzhen	China
St. Louis MSA	USA
Tampa MSA	USA
The Randstad Region	Netherlands
Tokio (TMA)	Japan
Torono GGH	Canada
Torono GTA	Canada
Tucson MSA	USA
Tulsa MSA	USA
Utrecht	Netherlands
Vancouver	Canada
Virginia Beach MSA	USA
Washington DC MSA	USA
Winnipeg	Canada
Zuid Holland (Rotterdam)	Netherlands

Key indicators

- Name of studied metro area
- Size of studied metro area (km2)
- Number of municipalities
- Type of metropolitan area: Polycentric or Monocentric
- Megaregion: Yes/Not
- Type of city/region: Gateway
- Type of land use control: Local/Metro/Regional
- Focused Study or general
- Surfaces area data availability: Yes/Not

- Name of warehouse data source
- Time period studied for logistics sprawl analysis
- Population (millions)
- Population density (inhabitants/km2)
- Number of warehouses
- Number of warehouses per million people
- Number of warehouses per 1000 km2
- Average size of warehouses (m2)
- Average distance of warehouses to centre of gravity (km)

- Change in population over the years (millions)
- % Change of the number of WH over the years
- Logistic sprawl: Change in average distance of WHs to centre of gravity (over the years) (km)
- Urban Rent Prices per year (EUR/m2)
- Suburban Rent Prices per year (EUR/m2)

Organization of the dataset

Urban key indicators

Name of the metro

Territorial area

Number of municipalities

Location in a megaregion

Morphology (polycentric or monocentric)

Classified as a gateway metro

Population

Population density (inhabitants/km²)

Logistics key indicators

Name of the warehouse datasource

Time period for logistics sprawl analysis

Number of warehouses

Number of warehouses per million people

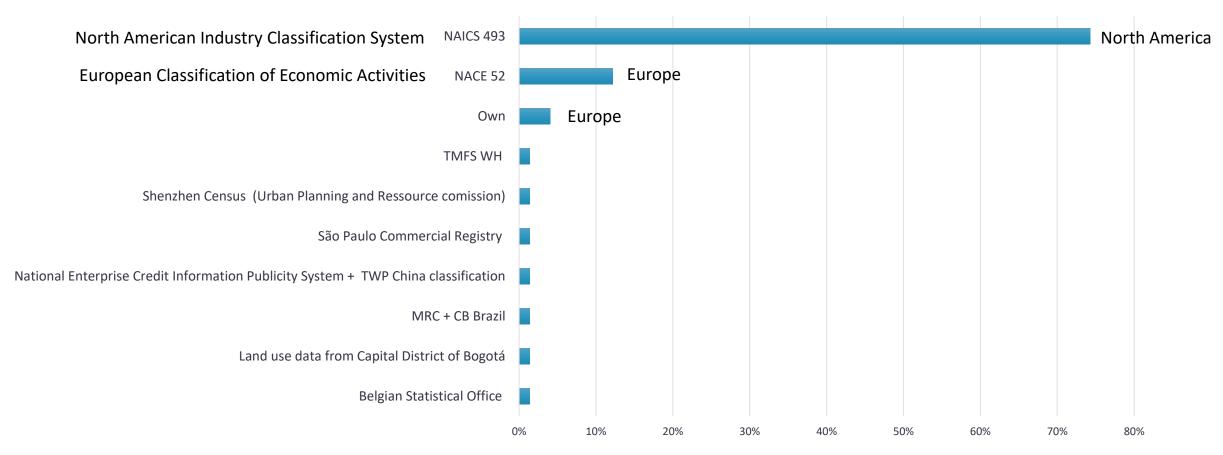
Number of warehouses per 1000 km²

Average distance of warehouses to gravity center (km)

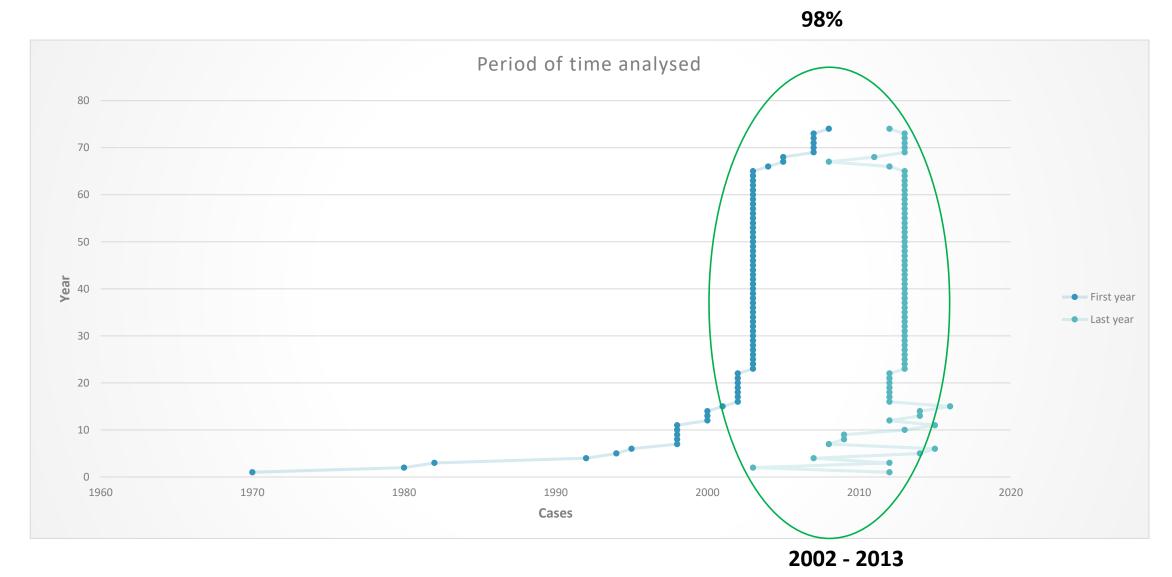
Logistic sprawl: Change in average distance of WHs to centre of gravity (over the years)

Urban and suburban rent prices per year (FUR/m2)

Variable Name	Description
metro	The name of the metropolitan area.
mega_region	The name of the mega-region to which the metropolitan area belongs.
country	The name of the country of the metropolitan area is located.
continent	The name of the continent in which the metropolitan area is located.
data_sources	The sources of data used to compile this dataset.
area (km2)	The total area of the metropolitan area in square kilometers.
number_mun	The number of municipalities included in the metropolitan area.
size	The size of the metropolitan area (small, medium, or large).
urban_centrality	Categories for urban morphology (polycentricity or monocentricity) of the metropolitan area.
gateway	Whether the metropolitan area is considered a gateway city.
time_period_start	The start year of the period covered by the dataset.
time_period_end	The end year of the period covered by the dataset.
years_data	The number of years covered by the dataset.
population_t0	The population of the metropolitan area at the start of the period covered by the dataset.
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
gravity_t0	Centrographic measure of the metropolitan area at the start of the period covered by the dataset.
population_t1	The population of the metropolitan area at the end of the period covered by the dataset.
number_ware_t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.
gravity_t1	Centrographic measure of the metropolitan area at the end of the period covered by the dataset.
log_sprawl	Binary variable for logistics sprawl.
log_sprawl_measure	Logistics sprawl measure in the metropolitan area.
avg_price	The average price of logistics real estate in the metropolitan area.
central	Whether the observation is in the central area of the metropolitan area.
suburban	Whether the observation is in the suburban area of the metropolitan area.
diff	The difference between the average price of real estate in central and suburban areas of the metropolitan area.
sprawl_year	Logistics sprawl per year.
quad	A categorical variable indicates the metropolitan area's quadrant based on its yearly sprawl level and differential warehouse rental prices.


First year (t0)

Last year (t1)


Warehouse data source

Warehouse data source*

^{*} For the 3 case studies in South Africa, Trent and Joubert (2022) use dataset of commercial vehicle movements from Global Positioning System (GPS) traces.

Years under study

Methodology and data issues

- •Working on the previous data collection performed by the Logistics City Chair (2019-2020) concerning metropolitan areas where logistics sprawl was investigated by different research teams and published in scientific journals. This previous dataset and the meta-analysis (Dablanc et al., 2020) considered 74 case studies (metropolitan regions studied in the literature on warehouse locations).
- •Updating the dataset with 4 new case studies: 3 in South Africa [Cape Town, Gauteng, eThekwini] (Trent & Joubert, 2022) and 1 in South Korea [Seoul] (Kang, 2022) for a total of 78 metropolitan regions whose logistics sprawl measures were calculated.
- •Reviewing the scientific papers considered in this study in order to build an updated meta-analysis.
- •Performing statistical tests to investigate each hypothesis and presenting the results in this global report on this research conducted from 2019 to 2023.

• Data issues:

- Databases are different: Ex. NAICS vs NACE codes (Type of logistic facilities → 3PL or warehouses insourced).
- Periods of time analysed are different.
- Regional areas into examination can be different.
- Insufficient data regarding location factors (ex. land prices) \rightarrow necessity to bypass the lack of data (not existent or not available in open access).

Hypotheses linking urban forms and the spatial distribution of warehouses

	Hypotheses
H1	There are more warehouses/pop in large and medium metropolitan regions than in smaller ones.
H2	There are more warehouses in global hub metropolitan regions (or Gateways) than in regular ones.
Н3	There are more warehouses in metropolitan regions belonging to mega-regions than in « regular » ones.
H4	The increase in the number of warehouses over time is more significant in medium and large metropolitan regions than in smaller ones.
H5	The increase in the number of logistics facilities over time is positively related to the importance of the role of global logistics hub (or Gateways) played by an urban area.
Н6	Logistics sprawl is positively related to the differential in land/rent values for logistics land uses between suburban and central areas in an urban region.
Н7	Logistics sprawl is negatively related to the degree of regional logistics land-use control.

Meta-analysis: selected papers

		2011	[B] [II] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Andriankaja, D.	<u>Le desserrement logistique, quelle</u>	2014	[Phdthesis]. University of	Paris
	responsabilite dans l'augmentation		Paris-East.	
	des emissions de CO2 des activites de			
	messagerie?			
Dablanc, L., Ogilvie,	Logistics Sprawl: Differential	2014	Transportation Research	Los Angeles,
S., & Goodchild, A.	Warehousing Development Patterns		Record: Journal of the	Seattle
	in Los Angeles, California, and Seattle,		Transportation Research	
	Washington.		Board, 2410(1), 105–112.	
Dablanc, L., & Ross,	Atlanta: A mega logistics center in the	2012	Journal of Transport	Atlanta
c.	Piedmont Atlantic Megaregion (PAM).		Geography, 24, 432–442.	
	Logistic sprawl and polarization in	2016	Proceedings WCTR.	Colombia
Suescún, J. P. B.	Colombian urban areas.	2020		
·		2020		urban areas
	An evaluation of logistics sprawl in	2020	Journal of Transport	Chicago,
Giron-Valderrama,	Chicago and Phoenix.		Geography, 88, 102298.	Phoenix
G., & Goodchild, A.				
Guerin, L., Vieira, J.	The geography of warehouses in the	2021	Journal of Transport	Sao Paulo
G. V., de Oliveira, R.,	<u>São Paulo Metropolitan Region and</u>		Geography, 91, 102976	
de Oliveira, L., Vieira,	contributing factors to this spatial			
H. E. de M., &	distribution.			
Dablanc, L.				
Heitz, A., & Dablanc,	Logistics Spatial Patterns in Paris: Rise	2015	Transportation Research	Paris
L.	of Paris Basin as Logistics Megaregion		Record: Journal of the	
			Transportation Research	
			Board, 2477(1), 76–84.	
Heitz, A., Dablanc, L.,	Spatial patterns of logistics facilities in	2020	Journal of Transport	Gothenburg
Olsson, J., Sanchez-			Geography, 88, 102191.	
Diaz, I., & Woxenius,			1130.00.1, 00, 102131.	
J.				

Heitz, A., Dablanc, L., &	Logistics sprawl in monocentric and polycentric	2017	Region, 4(1), 93	3.	Paris, Randstad
Tavasszy, L. A.	metropolitan areas: The cases of Paris, France, and				(Netherlands)
	the Randstad, the Netherlands.				
Kang, Sanggyun.	Exploring the contextual factors behind various	2022	Journal of	f Transport	Seoul
	phases in logistics sprawl: The case of Seoul		Geography.		
	Metropolitan Area, South Korea.				
Kang, Sanggyun	Relative logistics sprawl: Measuring changes in the	2020	Journal of	f Transport	US urban areas
	relative distribution from warehouses to logistics		Geography 83,	102636.	
	businesses and the general population.				
Klauenberg, J., Elsner, L.	Dynamics of the spatial distribution of hubs in	2018	Journal of	f Transport	Berlin
A., & Knischewski, C.	groupage networks – The case of Berlin.		Geography, Ma	y 2017, 102280.	
Li, G., Sun, W., Yuan, Q.,	Planning versus the market: Logistics	2020	Journal of	f Transport	Chongqing
& Liu, S.	establishments and logistics parks in Chongqing,		Geography, 82,	102599.	
	China.				
Oliveira, L., Santos, O.,	Is the Location of Warehouses Changing in the Belo	2018	Urban Science,	2(2), 43.	Belo Horizonte
Oliveira, R., & Nóbrega,	Horizonte Metropolitan Area (Brazil)? A Logistics				
R.	Sprawl Analysis in a Latin American Context.				
Strale, M.	Logistics sprawl in the Brussels metropolitan area:	2020	Journal of	f Transport	Brussels
	Toward a socio-geographic typology.		Geography, 88,	102372.	
Trent, N. M., & Joubert,	Logistics sprawl and the change in freight transport	2022	Journal of		South African
J. W.	activity: A comparison of three measurement		Geography, 10:	1, 103350.	urban areas
	methodologies.				urban ar cas
	Logistics land use patterns in metropolitan Canada.	2020	Journal of	f Transport	Canada urban
Jakubicek, P.			Geography, 88,	102381.	areas
Woudsma, C.,	Logistics sprawl in North America: Methodological	2016	Transportation	Research	
	issues and a case study in toronto.		Procedia, 12, 4		
Dablanc, L.					
	Remarking urban logistics space: E-tailing and	2017	[Phdthesis]. Th	ne University of	Shenzhen
	supply chain revolution in the case of Shenzhen,		Hong Kong.		
	<u>China</u>				
Yuan, Q., & Zhu, J.	Logistics sprawl in Chinese metropolises: Evidence	2019	Journal of	f Transport	Wuhan
	from Wuhan.		Geography, 74,	242–252.	

Meta-analysis : cord diagrams

warehousing establishments measure spraw urban centers? exurban areas centrographic analysis urban areas paris region facility location urban supply logistics system logistics facility location focational patterns average distance directional distribution metropolitan areas logistics sprawk spatial patterns monocentric urban standard distance logistics facilities spatial statistics logistics activities freight transport freight facilities urban freight transport garge metropolitan areas north american logistics industry logistics businesses distribution centers

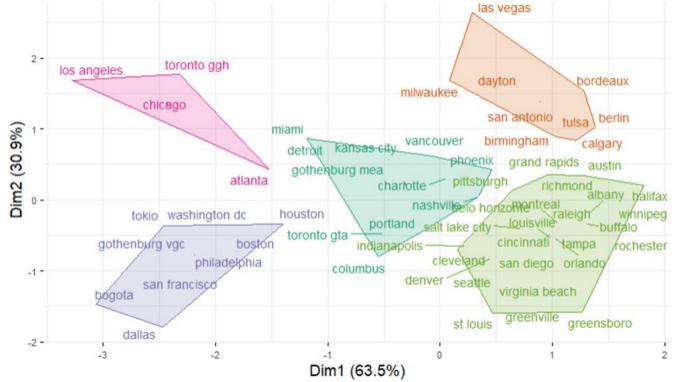
average distance logistics activities logistics industry

metropolitan areas

spatial patterns logistics facilities

logistics sprawl

supply chains spatial distribution freight transport


distribution centers

Which key terms appear in the scientific papers on logistics spatial patterns?

By exploring key terms in the selected papers of the meta-analysis: 39 main terms.

The terms "logistics activities", "spatial patterns", "logistics facilities", "logistics sprawl", "average distance", and "metropolitan areas" are the ones that present the most robust connections.

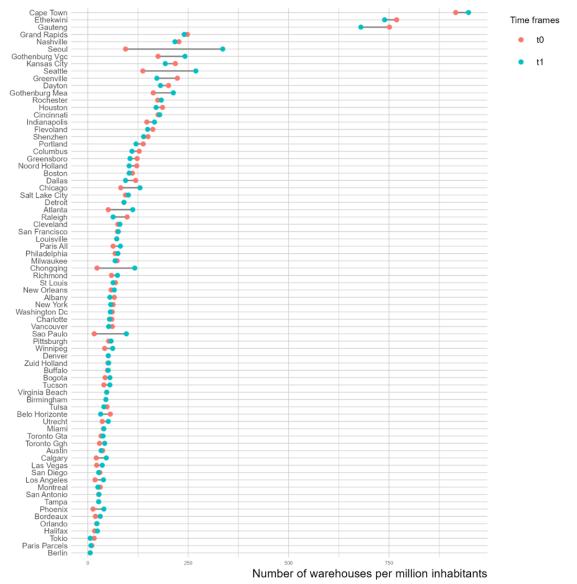
Meta-analysis: clustering analysis

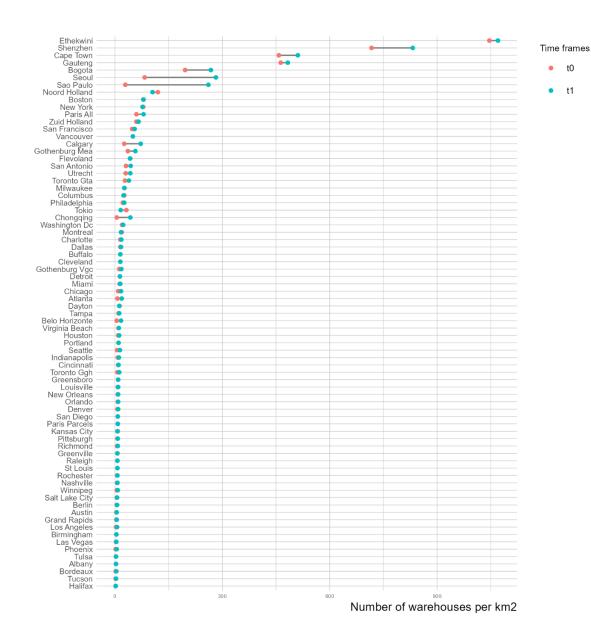
ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-S								
Groups	Color	Number of warehouses in the first year	Number of warehouses in the last year	Logistics sprawl				
1	Pink	0.46	0.81	0.88				
2	Orange	0.09	0.09	0.68				
3	Light Green	0.18	0.18	0.26				
4	Purple	0.73	0.66	0.43				
5	Dark green	0.34	0.34	0.51				

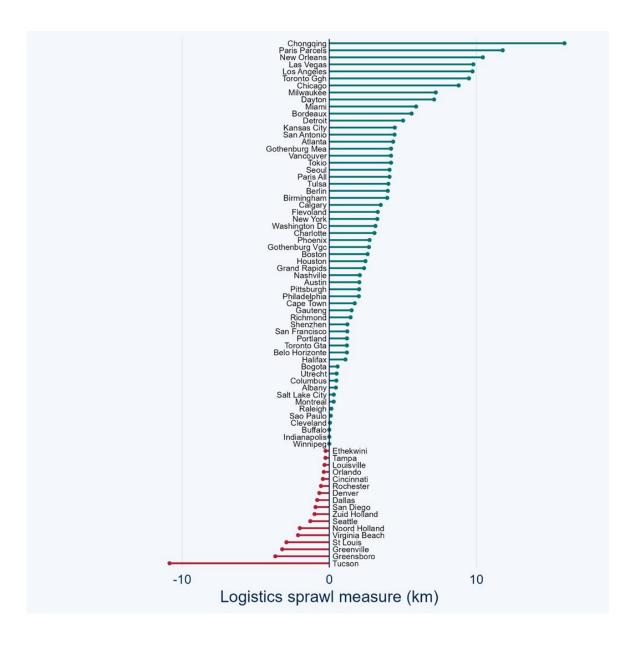
An additional attempt was made to synthesize the results of studies that measured logistics sprawl quantitatively. This section explores the data published in previous studies. As techniques considered for the meta-analysis, we used: descriptive statistics and cluster analysis (k-means).

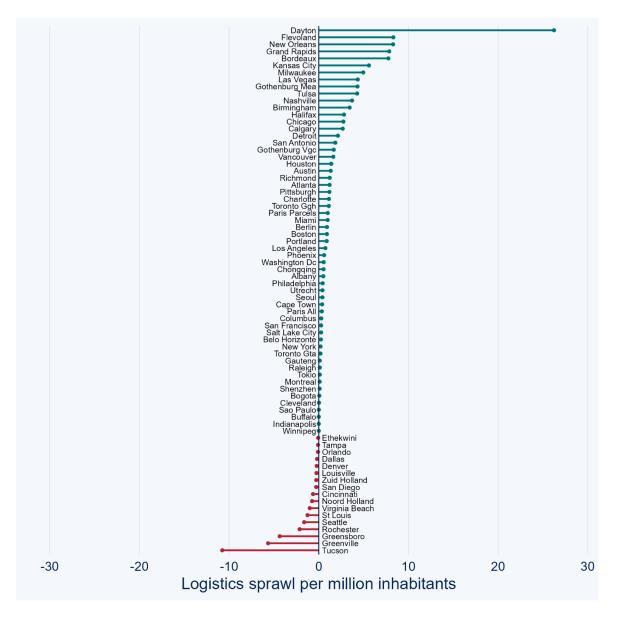
Group 1 (pink): metros with the highest average logistics sprawl, the highest number of warehouses in the last year and the second highest in the first year.

Group 2 (orange): metros with the lowest score for the number of warehouses in both timeframes and the second highest for logistics sprawl.

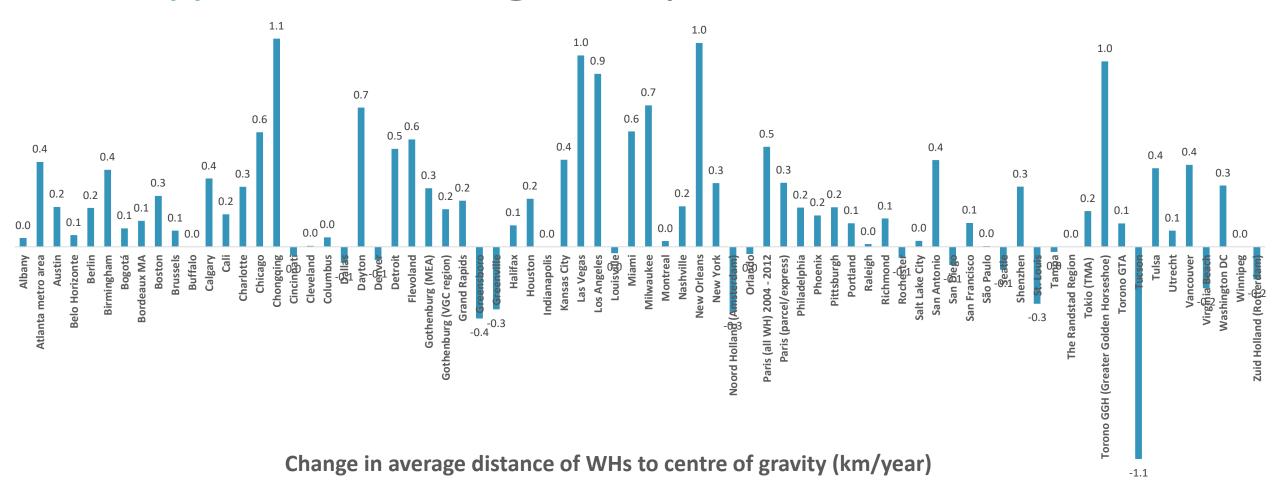

Groupe 3 (light green): metros with a low number of warehouses' average score and the lowest average logistics sprawl.


Groupe 4 (purple): metros with the highest score for the number of warehouses in the first year, the second largest average score for the number of warehouses in the last one, and the second lowest average score for logistics sprawl.

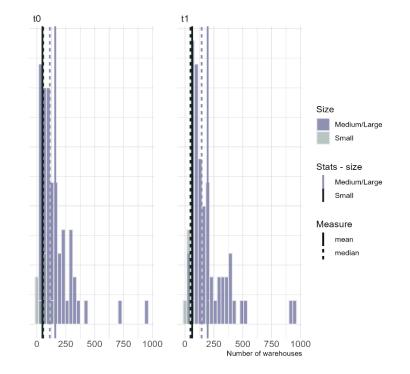

Groupe 5 (dark green): the metros with intermediary scores for all variables.


Hypotheses investigation

Exploratory data analysis



Hypotheses: Logistic sprawl


H1: There are more warehouses in large and medium metropolitan regions than in smaller ones

Result: The number of warehouses in medium and large metros is higher than in small ones, at a significance level of 5%

Variable Name	Description
metro	The name of the metropolitan area.
size	The size of the metropolitan area (small, medium, or large).
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
_number_ware_t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.

Average
number of
warehouses,
metro
classification,
and timeframe
– H1 number
of warehouses

Data	Time The average		Size		
		number of warehouses	Small	Medium/L arge	
Complet	t0	374	49	407	
е	t1	518	62	564	
Without	t0	148	49	158	
outliers	t1	183	62	196	

Histograms for the number of warehouses in different categories of metros and time – H1 H1: There are more warehouses/pop in large and medium metropolitan regions than in smaller ones

Result: The number of warehouses **per million inhabitants** and **per 1000km²** in medium and large metros **is**

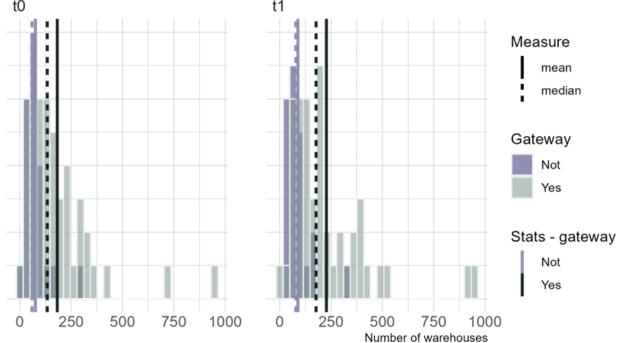
higher than in small ones

Large regions have the highest number of warehouses at both t0 and t1, followed by the medium and small regions.

- The number of warehouses per million inhabitants follows the same trend as the number of warehouses presented previously, however, the highest number of warehouses per million inhabitants is located in medium size metropolitan areas followed closely by large metro areas.
- As for the number of warehouses per 1000 km², the same tendencies for the number of warehouses are observed.

	Number of warehouses per million inhabitants							
Statistics	Size: Small metropolitan areas		Size: Medium metropolitan areas		Size: Large metropolitan areas			
	T0	T1	T0	T1	T0	T1		
Count	7	7	46	48	23	23		
Mean	95.3	101.6	145.6	258.9	131.9	150.2		
Std	77	77.4	326.75	776.2	227	223.3		
Min	17	23	5	5	10	6		
25%	30.5	42.5	45.5	45	30.5	47.5		
50%	65	61	60	64	63	80		
75%	162	164.5	134.75	130.5	101.5	123		

Number of warehouses per 1000 km2							
	Size: Small n	netropolitan	Size: Medium metropolitan		Size: Large m	etropolitan	
Statistics	area	as	areas		area	S	
	T0	T1	TO	T1	T0	T1	
Count	7	7	46	48	23	23	
Mean	14.4	18	36.5	134.5	3708.5	12367	
Std	17.3	21.8	153.4	674.1	17271.3	58669.3	
Min	1	2	1	2	3	6	
25%	2.5	3.5	6	6.75	10.5	16	
50%	5	8	7.5	9.5	29	42	
75%	24	26.5	14	18	79	170	
Max	42	56	1046	4588	82933	281500	


H2: There are more warehouses in global hub metropolitan regions (or 'gateways') than in regular ones

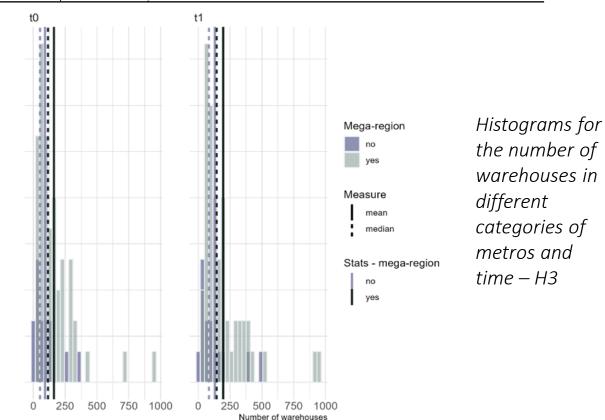
Result: The number of warehouses in gateway metro areas **is higher** than in non-gateway ones, at a significance level of 5%

Variable Name	Description
metro	The name of the metropolitan area.
gateway	If the metropolitan region is a global hub city or gateway.
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
_number_ware_t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.

Average number of warehouses, metro classification, and timeframe – H2

Data	Time	The average	Gateway	
		number of warehouses	Yes	No
Complet	t0	374	347	438
e	t1	518	541	466
Without	t0	148	183	76
outliers	t1	183	228	89

Histograms for the number of warehouses in different categories of metros and time – H2

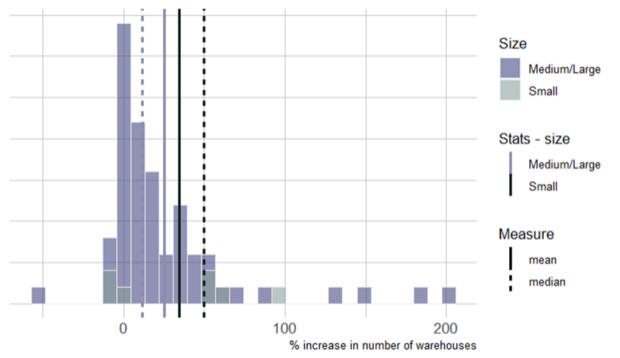

H3: There are more warehouses in metropolitan regions that belong to megaregions than in "regular" ones

Result: The number of warehouses in metros located in megaregions is higher than in the others, at a significance level of 5%

Variable Name	Description
metro	The name of the metropolitan area.
mega_region	If the metropolitan region is part of a mega-region.
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
number_ware_t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.

Average number of warehouses, metro classification, and timeframe – H3

Data	Time	The average	Megaregion	
		number of warehouses	Yes	No
Complet	t0	374	230	832
е	t1	518	299	1210
Without	t0	148	163	92
outliers	t1	183	196	131


H4: The increase in the number of warehouses over time is larger in medium and large metropolitan areas than in smaller ones

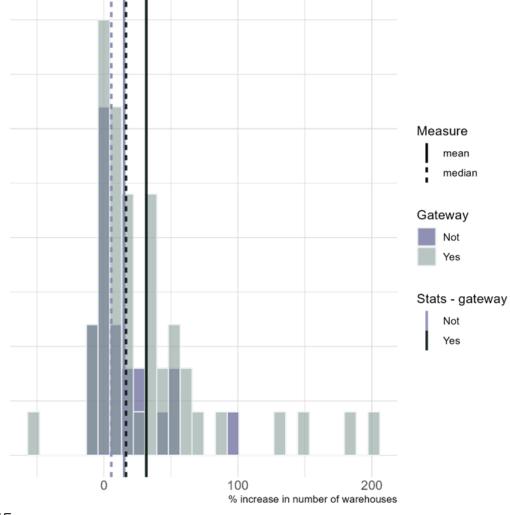
Result: The average % increase in the number of warehouses in small metros is **not statistically relevant** from that in medium and large ones, at a significance level of 5%

Variable Name	Description
metro	The name of the metropolitan area.
mega_region	If the metropolitan region is part of a mega-region.
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
number ware t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.

Average number of warehouses, metro classification, and timeframe – H4

Data		Size
	Small	Medium/Large
Complete	35%	59%
Without outliers	35%	26%

Histogram
for the
increase
in the
number of
warehous
es in
different
categories
of metros
– H4

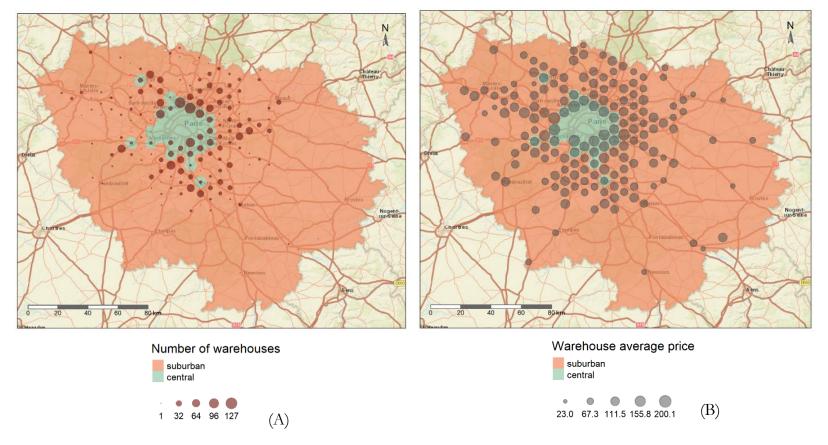

H5: The increase in the number of logistics facilities over time is positively related to the importance of the role of global logistics hub (or gateways) played by an urban area

Result: The average % increase in the number of warehouses in gateway metros is **not statistically relevant** from that in non-gateway ones, at a significance level of 5%

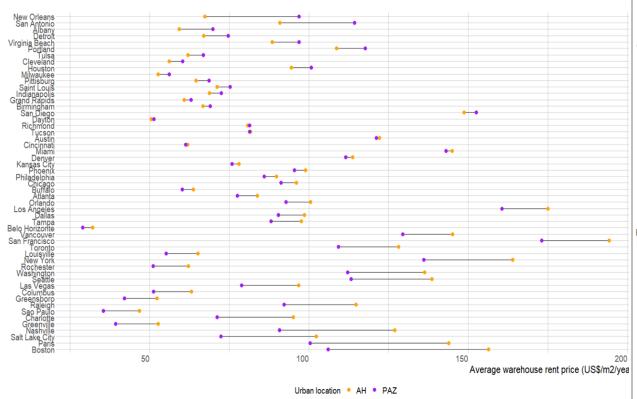
Variable Name	Description
metro	The name of the metropolitan area.
gateway	If the metropolitan region is a global hub city or gateway.
number_ware_t0	The number of warehouses in the metropolitan area at the start of the period covered by the dataset.
number_ware_t1	The number of warehouses in the metropolitan area at the end of the period covered by the dataset.

Average number of warehouses, metro classification, and timeframe – H5

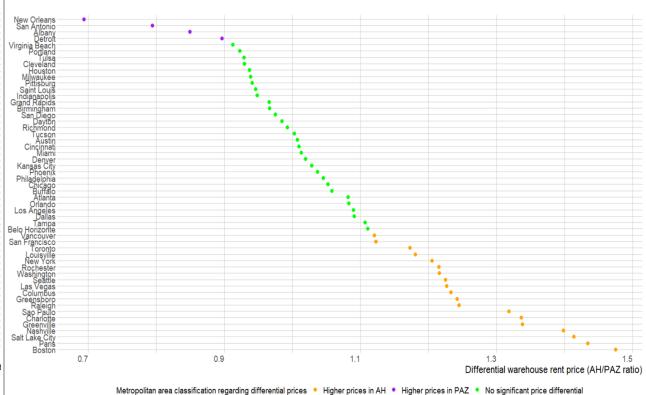
Data	Gate	eway
	Yes	No
Complete	71%	26%
Without outliers	32%	16%



Histogram for the % increase in the number of warehouses in different categories of metros – H5

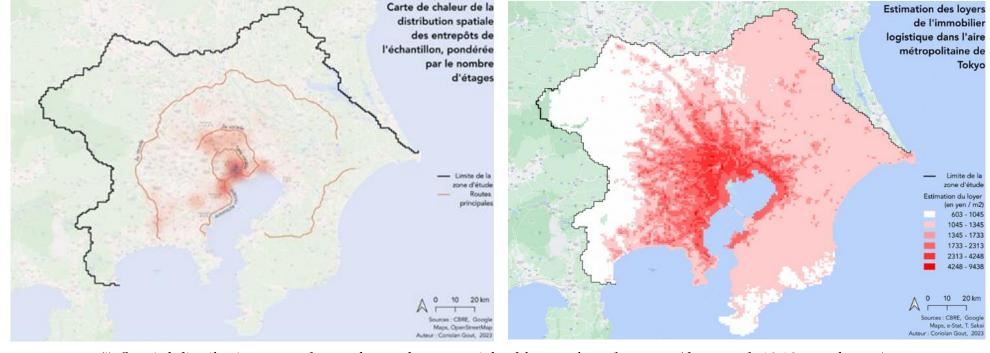

H6: Logistics sprawl is positively related to the differential in land/rent values for logistics land uses between suburban and central areas in an urban region

Result: The relationship between the differential warehouse prices and the yearly logistics sprawl is statistically quite positive but limited (de Oliveira, Dablanc, Schorung, 2022)


The data was obtained in structured statistics datasets and warehouse real estate websites. We proposed a typology of the urban regions for determining the differential warehouse rent prices, namely Activity Hubs and Peripheral Activity Zones. This classification was based on an Urban Activity Index.

Representation of the number of warehouses and the average rent price in each hexagon for Paris (region Ile-de-France)

Representation of warehouse average rent prices for AH and PAZ for each metropolitan region

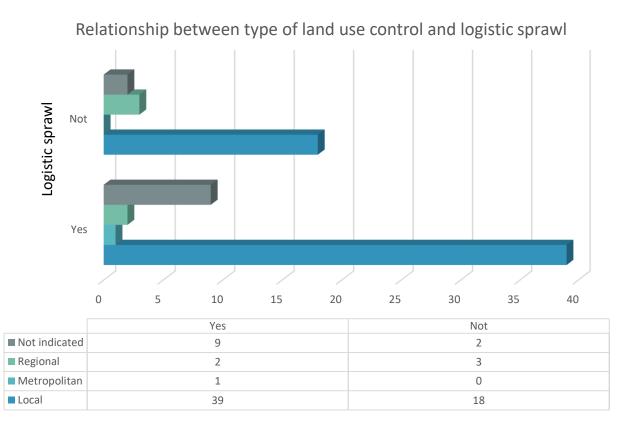


Representation of proportional rent prices differential for warehouses in each location for each metropolitan region

Focus on Tokyo Metro Area (Gout, 2023)

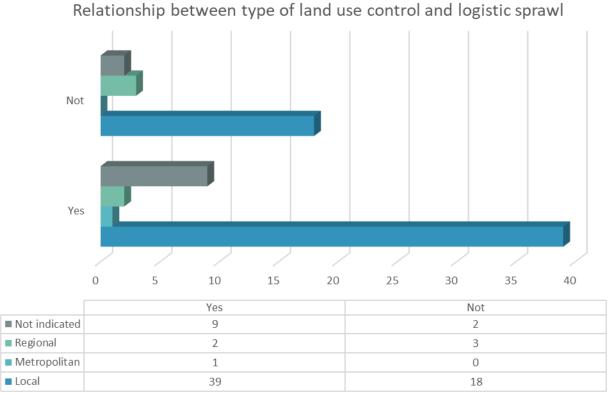
On the scale of the study area, the variables with the greatest impact on rent per m² are, in order: distance-time to the nearest port, accessibility to the night-time population and accessibility to industry. Around Tokyo Bay, the variables with the greatest impact on rent per m² are, in order: accessibility to the night-time population, distance-time to the nearest port and accessibility to consumption. There is a **significant relationship** between rent per m² and night-time pop accessibility, consumer accessibility and the presence of a warehouse in the Tokyo Bay area.

We identify can three areas with high rents in Tokyo Bay: downtown Tokyo, around the bay (5 km from the coast) and along the main highways -> this case study **confirms** the centerperiphery gradient logistics real estate rents



(i) Spatial distribution map of sample warehouses, weighted by number of storeys (dataset of 4048 warehouses);

(ii) Estimated rents for logistics real estate in the Tokyo metropolitan area (yen per sq.m per year) (Gout, 2023)


Hypotheses: Complex analyses

H7: Logistics sprawl is negatively related to the degree of regional logistics land use control

H7: Logistics sprawl is negatively related to the degree of regional logistics land-use control

Result: There is no sufficient data to allow the exploration of the hypothesis. This will require further analysis.

Local

(Dablanc et al., 2020)

Key conclusions

Hypotheses	Validated	Conclusion
H1	Yes	There are more warehouses/pop in medium and large cities than in smaller cities
H2	Yes	There are more WHs in global hub cities (or 'gateways') than in "regular" cities
Н3	Yes	There are more warehouses in cities that belong to a megaregion than in "regular" cities
H4	No	The difference of increase in the number of warehouses in small metros is not statistically relevant from the medium/large ones
Н5	No	The % increase in the number of warehouses in gateway metros is not statistically relevant from the ones that are not
Н6	Yes (but limited)	Logistics sprawl <u>could be</u> positively related, <u>in some cases</u> , to the differential in land/rent values for logistics land uses between suburban and central areas in an urban region
H7	Need further study	Logistics sprawl is <u>not always</u> negatively related to the degree of regional logistics land use control

Recommendations for further studies

- Replicate the method to analyze differential location prices (Oliveira et al. (2022)) for metropolitan areas in the Global South
- Investigate Asian metropolitan areas and South America metro areas to understand if there are differences in the urban structure and other characteristics compared to the other metro areas
- Refine the analysis of logistics sprawl considering warehouse characteristics, such as size, operation, and type of WH (for example, parcel and express couriers)
- Explore clusters of metropolitan areas grouped by urban characteristics to investigate the hypotheses considering the sub-groups of metro areas
- Perform specific research on H7, exploring land use control, and regional and local policies

References

- Andriankaja, D. (2014). Le desserrement logistique, quelle responsabilité dans l'augmentation des emissions de CO2 des activites de messagerie? [PhD Thesis]. University of Paris-East.
- Dablanc, L. (2014). Logistics Sprawl and Urban Freight Planning Issues in a Major Gateway City. 49–69. https://doi.org/10.1007/978-3-642-31788-0_4
- Dablanc, L., Palacios-Argüello, L., & Oliveira, L. (2020). Logistics city chair: Logistics sprawl characterization. Chair Logistics City.
- Dablanc, L., & Rakotonarivo, D. (2010). The impacts of logistics sprawl: How does the location of parcel transport terminals affect the energy efficiency of goods' movements in Paris and what can we do about it? *Procedia Social and Behavioral Sciences*, 2(3), 6087–6096. https://doi.org/10.1016/j.sbspro.2010.04.021
- Dablanc, L., & Ross, C. (2012). Atlanta: A mega logistics center in the Piedmont Atlantic Megaregion (PAM). Journal of Transport Geography, 24, 432–442. https://doi.org/10.1016/j.jtrangeo.2012.05.001
- Daraviña, P. A. C., & Suescún, J. P. B. (2016). Logistic sprawl and polarization in Colombian urban areas. WCTR, Shangai.
- Diaz, G. (2020). Stopwords ISO [Data set]. https://github.com/stopwords-iso. https://github.com/stopwords-iso
- Diziain, D., Ripert, C., & Dablanc, L. (2012). How can we Bring Logistics Back into Cities? The Case of Paris Metropolitan Area. *Procedia Social and Behavioral Sciences, 39,* 267–281. https://doi.org/10.1016/j.sbspro.2012.03.107
- Gatta, V., Marcucci, E., & Le Pira, M. (2017). Smart urban freight planning process: Integrating desk, living lab and modelling approaches in decision-making. *European Transport Research Review*, *9*(3), 32. https://doi.org/10.1007/s12544-017-0245-9
- Giuliano, G., & Kang, S. (2018). Spatial dynamics of the logistics industry: Evidence from California. *Journal of Transport Geography*, 66(November 2017), 248–258. https://doi.org/10.1016/j.jtrangeo.2017.11.013
- González-Feliu, J. (2018). Urban logistics and spatial territorial intelligence indicators: State-of-the-art, typology and implications for Latin American cities. *Interfases*, 011, 136–176. https://doi.org/10.26439/interfases2018.n011.2958
- Grames, E. (2019). Litesearch. https://github.com/elizagrames/litsearchr
- Guerin, L., Vieira, J. G. V., Oliveira, R. L. M. de, Oliveira, L. K. de, Vieira, H. E. de M., & Dablanc, L. (2021). The geography of warehouses in the São Paulo Metropolitan Region and contributing factors to this spatial distribution. *Journal of Transport Geography*, *91*, 102976. https://doi.org/10.1016/j.jtrangeo.2021.102976
- Hair, J. F. (Org.). (2006). Multivariate data analysis (6th ed). Pearson Prentice Hall.
- Heitz, A., & Dablanc, L. (2015). Logistics spatial patterns in Paris rise of Paris basin as logistics megaregion. Transportation Research Record, 2477(2477), 76–84. https://doi.org/10.3141/2477-09
- Heitz, A., Dablanc, L., Olsson, J., Sanchez-Diaz, I., & Woxenius, J. (2020). Spatial patterns of logistics facilities in Gothenburg, Sweden. *Journal of Transport Geography*, 88(March), 0–1. https://doi.org/10.1016/j.jtrangeo.2018.03.005
- Heitz, A., Dablanc, L., & Tavasszy, L. A. (2017). Logistics sprawl in monocentric and polycentric metropolitan areas: The cases of Paris, France, and the Randstad, the Netherlands. REGION, 4(1), Artigo 1. https://doi.org/10.18335/region.v4i1.158
- Hogg, R. V., & Tanis, E. A. (2010). Probability and statistical inference (8th ed). Prentice Hall.
- Hollander, M., Wolfe, D. A., & Chicken, E. (2014). Non-parametric statistical methods (Third edition). John Wiley & Sons, Inc.
- Humaira, H., & Rasyidah, R. (2020). Determining The Appropriate Cluster Number Using Elbow Method for K-Means Algorithm. *Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia, Padang, Indonesia.* Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia, Padang, Indonesia. https://doi.org/10.4108/eai.24-1-2018.2292388
- Kang, S., 2020. Relative logistics sprawl: Measuring changes in the relative distribution from warehouses to logistics businesses and the general population. *Journal of Transport Geography* 83, 102636.
- Klauenberg, J., Elsner, L. A., & Knischewski, C. (2018). Dynamics of the spatial distribution of hubs in groupage networks The case of Berlin. *Journal of Transport Geography, May 2017,* 102280. https://doi.org/10.1016/j.jtrangeo.2018.07.004

- Krzywinski, M., & Altman, N. (2014). Non-parametric tests. Nature Methods, 11(5).
- Li, G., Sun, W., Yuan, Q., & Liu, S. (2020). Planning versus the market: Logistics establishments and logistics parks in Chongqing, China. *Journal of Transport Geography*, 82(November 2019), 102599. https://doi.org/10.1016/j.jtrangeo.2019.102599
- Montgomery, D. C., & Runger, G. C. (2011). Applied statistics and probability for engineers (5th ed). Wiley.
- Oliveira, L., Santos, O., Oliveira, R., & Nóbrega, R. (2018). Is the Location of Warehouses Changing in the Belo Horizonte Metropolitan Area (Brazil)? A Logistics Sprawl Analysis in a Latin American Context. *Urban Science*, 2(2), 43. https://doi.org/10.3390/urbansci2020043
- Oliveira, R., Dablanc, L., & Schorung, M. (2022). Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas. *Journal of Transport Geography*, 104, 103450. https://doi.org/10.1016/j.jtrangeo.2022.103450
- Pestana, H. (2014). ANÁLISE DE DADOS PARA CIÊNCIAS SOCIAIS A Complementaridade do SPSS 6 ª EDIÇÃO Revista, Atualizada e Aumentada MARIA HELENA PESTANA JOÃO NUNES GAGEIRO. Edições Silabo, Lda. https://doi.org/10.13140/2.1.2491.7284
- Ross, A., & Willson, V. L. (2017). Paired Samples T-Test. Em A. Ross & V. L. Willson, Basic and Advanced Statistical Tests (p. 17–19). SensePublishers. https://doi.org/10.1007/978-94-6351-086-8_4
- Sakai, T., Kawamura, K., & Hyodo, T. (2016). Logistics Facility Distribution in Tokyo Metropolitan Area: Experiences and Policy Lessons ★. *Transportation research procedia*, 12, 263–277. https://doi.org/10.1016/j.trpro.2016.02.064
- Sakai, T., Kawamura, K., & Hyodo, T. (2018). The relationship between commodity types, spatial characteristics, and distance optimality of logistics facilities. *Journal of Transport and Land Use*, 11(1). https://doi.org/10.5198/jtlu.2018.1363
- Scheff, S. W. (2016). Non-parametric Statistics. Em Fundamental Statistical Principles for the Neurobiologist (p. 157–182). Elsevier. https://doi.org/10.1016/B978-0-12-804753-8.00008-7
- Spiekermann, K., & Neubauer, J. (2002). European accessibility and peripherality: Concepts, models and indicators.
- Strale, M. (2020). Logistics sprawl in the Brussels metropolitan area: Toward a socio-geographic typology. Journal of Transport Geography, 88, 102372. https://doi.org/10.1016/j.jtrangeo.2018.12.009
- Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018). Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. *IOP Conference Series: Materials Science and Engineering*, 336, 012017. https://doi.org/10.1088/1757-899X/336/1/012017
- Taniguchi, E. (Org.). (2001). City logistics: Network modelling and intelligent transport systems (1st ed). Pergamon.
- Trent, N. M., & Joubert, J. W. (2022). Logistics sprawl and the change in freight transport activity: A comparison of three measurement methodologies. *Journal of Transport Geography, 101,* 103350. https://doi.org/10.1016/j.jtrangeo.2022.103350
- Walker, J. J. (2007). Systematic Reviews in the Social Sciences: A Practical Guide by Petticrew, M. and Roberts, H. Sociology of Health & Illness, 29(2), 318–319. https://doi.org/10.1111/j.1467-9566.2007.498_4.x
- Wee, B. V., & Banister, D. (2016). How to Write a Literature Review Paper? Transport Reviews, 36(2), 278–288. https://doi.org/10.1080/01441647.2015.1065456
- Woudsma, C., & Jakubicek, P. (2020). Logistics land use patterns in metropolitan Canada. Journal of Transport Geography, 88, 102381. https://doi.org/10.1016/j.jtrangeo.2019.01.001
- Woudsma, C., Jakubicek, P., & Dablanc, L. (2016). Logistics sprawl in north America: Methodological issues and a case study in Toronto. *Transportation Research Procedia*, 12, 474–488. https://doi.org/10/gm5gns
- Xiao, Z. (2017). Remarking urban logistics space: E-tailing and supply chain revolution in the case of Shenzhen, China [PhD Thesis]. The University of Hong Kong.
- Yuan, Q., & Zhu, J. (2019). Logistics sprawl in Chinese metropolises: Evidence from Wuhan. *Journal of Transport Geography*, 74(December 2018), 242–252. https://doi.org/10.1016/j.jtrangeo.2018.11.019

https://www.lvmt.fr/en/chaires/logistics-city/

https://www.ecommercemobilities.com/

