French Institute of Science and Technology for Transport, Development and Networks

INDIRA-B Project INDIcators for Reliability and Variability of Bus Systems'

Neïla BHOURI Gérard SCEMAMA, Hassan MAHDAVI, Mustapha TENDJAOUI, sylvain LASSARRE,

Sommaire

- 1. Le projet INDIRA_B
- 2. Exploitation conjointe des données AVL et ETM
- 3. Supervision de la fiabilité temporelle
- 4. Résilience statique du réseaux
- 5. Résilience dynamique et application aux données de New Delhi

INDIRA-B: INDIcators for Reliability and Variability of Bus Systems

IFCPAR/CEFIPRA : Indo-French Centre for the Promotion of Advanced Research

Partners of the project

2 academic partners

Funding body

TRIPP (Transportation Research and Injury Prevention Programme)/ IIT Delhi

Industrial partner

DIMTS (Delhi Integrated Multi-Modal Transit System Ltd), Delhi, India

Delhi Bus Transit MAP

Delhi Bus Transit System

Delhi Transport Corporation (DTC)

- 100% Government Owned
- Fleet Size = 3900
- Fleet Type = Low Floor CNG Buses
- Services = AC & Non AC buses
- Daily ridership = 3,500,000
- Fare Structure : AC = 10,15,20,25
- NON AC = 5,10,15
- Number of Routes = 500
- Number of bus stops = 4400
- Number of Depots = 40

Delhi Integrated Multi Modal Transit system (DIMTS

- 50% Government Owned
- Fleet Size = 1750
- Fleet Type = Semi Low Floor CNG Buses
- Services = Non AC buses
- Daily ridership = 1,000,000
- Fare Structure : 5,10,15
- Number of Routes = 190
- Number of bus stops = 3200
- Number of Depots = 10
- Num of Concessionaire = 10

Objective of Indira_B project

To develop performance indicators and design a bus fleet "supervision cockpit"

The originality of our approach lies in at least 4 points

4- Performance indicators: should be clear, easily understandable, useful to the audience

AVL: Automatic Vehicle Location ETM: Electronic Ticketing Machine

Intégration des données AVL et ETM

Example : passengers load at supernodes and bus delay on links

Indicators from only AVL data

Punctuality

- Schedule Adherence
- Variability in departure and arrival times
- At terminal stops
- Regularity
 - Headway adherence
 - Headway ratio
 - Gini coefficient and Lorenz curve
 - Variability of headway
 - At bus stops
 - Link-based speed and travel time
 - Travel time variability (TTV)
 - Distribution of travel times and speeds

Indicators from AVL & ETM data

- Passenger demand
 - Passenger loads
 - Flow variation
 - Passenger exchange
- Trip variability
 - Additional travel time for passengers
 - Reliability buffer time

Sunday, 10 February 2019

Sample Routes (25) – 1 Month Data

- Ideally high frequency routes should be classified as less than 6 mins
- However, almost no routes in Delhi have frequency less than 10 mins (thus selected as criterion for classification)

Sunday, 10 February 2019

Comparative Up and Down Speed Profiles

Headway variability (HV)

HV	% of stops (morning peak)	% of stops (off peak)	% of stops (evening peak)		
Insuff. data	1.3	0.6	1.2		
0 - 1	5.1	5.2	0.4		
1 - 2	6.4	4.3	3.3		
2 - 3	19.4	8.2	4.8		
> 3	67.9	81.9	90.3		

- Long length—low freq routes have most stops with lowest HV
- Short routes have most stops with highest HV – need to be monitored

Headway variability (HV) Heat Map Analysis

Gini index and Lorenz Curve

A synthetic indicator of inequality used in economic studies mainly to measure the inequality of incomes and health among the population.

Regularity = $1 - Gini = \frac{1}{2}$

A Lorenz curve plots the cumulative percentages of total income (wealth, ..) received against the cumulative percentage of the population, starting with the poorest individual or household Gini=0; perfect equality, Gini=1, One person has all the income ...

 $2\sum (h_i - H).i$

Lorenz curve analysis

INDIRA-B project: INDIcators for Reliability and Variability of Bus Systems

PASSENGER INDICATORS

Sunday, 10 February 2019

TRIPP, IIT Delhi

INDIRA-B project: INDIcators for Reliability and Variability of Bus Systems'

18

Boarding Alighting

Passenger Load Indicators

Morning peak

Off peak

Passenger Variables	Morning	Off-peak	Evening
Average Passenger Volume, P _{avg}	44	55	39
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.144	1.285	1.413
Coefficient of passenger exchange, $\eta_x = B_L/(B_L - \Sigma b_i - a_i)$	1.019	1.031	1.023

20

Evening peak

Sunday, 10 February 2019

Passenger boarding per bus Hargovind Enclave High Low Akshardham Temple Ashram Andrews Gar Kilometers Kilometers 12 0 2 4 8 12 16 **Off-peak** Morning peak ISBT Kashmere Sate. **Evening peak** Kilometers 0 2 4 8 12 16 INDIR

Passenger alighting per bus

In-vehicle passengers per bus

Global Efficiency Indicator for Resilience Measurement

Robustness Reliability Recovery Excess Capacity Resourcefulness Managing Index Adaptability

Table 1. : Formulation of physcial and flow reliability indicators

Indicator	Formulation
OD reliability	$Rl^{od}(G,P) = \sum_{k=1}^{n} P(D_k)$
System reliability	$Rl^{sys.}(G,P) = \frac{1}{N(N-1)} \sum_{o=1}^{n} \sum_{d=1}^{n} Rl^{od}$
Nodal flow reliability	$F^{node}(G, P) = \sum_{d=1}^{n} W_{od} \times Rl^{od}$
Loss of system flow reliability	$L^{sys.}(G, P) = \sum_{o=1}^{n} \sum_{d=1}^{n} W_{od}(1 - Rl^{od})$
Node range flow reliability	$F_{range}^{node}(G,P) = W_{od} \times Rl_{max}^{od} - W_{od} \times Rl_{min}^{od} $
Node reliability range	$Rl_{range}^{node}(G,P) = \mid Rl_{max}^{od} - Rl_{min}^{od} \mid$

Assessment of System resilience – <u>Sample Mandl Swiss Network</u>

od	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	0
1	0	400	200	60	80	150	75	75	30	160	30	25	35	0	0	~
2	400	0	50	120	20	180	90	90	15	130	20	10	10	5	0	
3	200	50	0	40	60	180	90	90	15	45	20	10	10	5	0	~
4	60	120	40	0	50	100	50	50	15	240	40	25	10	5	0	_/
5	80	20	60	50	0	50	25	25	10	120	20	15	5	0	0	3 4
6	150	180	180	100	50	0	100	100	30	880	60	15	15	10	0	-
7	75	90	90	50	25	100	0	50	15	440	35	10	10	5	0	
8	75	90	90	50	25	100	50	0	15	440	35	10	10	5	0	
9	30	15	15	15	10	30	15	15	0	140	20	5	0	0	0	
10	160	130	45	240	120	880	440	440	140	0	600	250	500	200	0	
11	30	20	20	40	20	60	35	35	20	600	0	75	95	15	0	
12	25	10	10	25	15	15	10	10	5	250	75	0	70	0	0	
13	35	10	10	10	5	15	10	10	0	500	95	70	0	45	0	
14	0	5	5	5	0	10	5	5	0	200	15	0	45	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

15 nodes

21 links

total demand of 15570 passenger trips as average number of bus passengers per hour for peak time

35 different Mandl Swiss Bus Networks

Node Disruption scenarios

Example for network with 4 routes: 15 nodes

RESILIENCE_PRODUCT				- 🗆 X
Data Setting - Network Resilie	nce Analysis			IFSTTAR
Define Directory File and Upload Data	Define Disruption Scenario			
C:\Users\user\Deskton\Resilience_data	Single Ranked Based Attack (Select to Explain)	 Disruption Scenario Parameter S 	Setting	
C. OSCI SIUSCI DESKLOPINESIICH CE_UUU	Single Link Ranked Based Attack	Selected Scenario Status	Single Ranking Scenario	
Create Directory Directory Generated	Single Route Ranked Based Attack Single Fleet Ranked Based Attack	Individual Evaluation Resilience Model	~	
Active Data Connect	Single Random Based Attack (Select to Explain) Single Stop Random Based Attack	Resilience f (Real Robstness, Real Rel	liability)	Due for Evaluation
File Uploaded	Single Link Random Based Attack	✓ Between-ness Cent ✓ Node Phy ✓ Global Efficiency ✓ Node Flov	vsical Relia Explain w Reliability	Run for Evaluation
	Single Fleet Random Based Attack	Weighted Assortativ System P	hysical Reliab	Cancel
Define Directory File and Upload Data	Multi Ranked Based Attack (Select to Explain) Multi Stop Ranked Based Attack	Normal Assortativity System F	low Reliabi	
No. of Bus Transit 15	Multi Link Ranked Based Attack Multi Route Ranked Based Attack	✓ Average Paul Lengul ♥ Hansier	Passenger Ser	
Transit Seating 40	Multi Fleet Ranked Based Attack Multi Random Based Attack (Select to Explain)	Diameter Ontime Pe	erformance Reliabi	
No. Comparing 32	Multi Stop Random Based Attack	Beta Index Punctualit	ty	
		s Resilience index		
	Listbox Figure - Network -2	2Node Reliability Range	🖌 💽 Figure 1	– 🗆 ×
	Stop 14	15 Stop 1 	File Edit View Insert Tools De	esktop Window Help 🏻 🛥
		0.03 0.03 0.03 0.03	🔁 🖆 🛃 🍓 🗞 🔍 🔍 🥙 🕲	ų 🖌 • 🤤 🗉 📄 🔲 🔡 🔤
	Siep 13	0.5. 0.44 0.38	10	
		024 925 016	•1	
	Step 12	0.ja 1600 0	2	
			6 -	€ 6 €15 € 9 -
	Shop 11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4	
			12	8
		3000	2	
	3top 9	Stop 7 Stop 8	0-	-13 -
			-2	
			-2 0 2	4 6 8 10
		Line .	4	
			A COL	
			023	· · · · · · · · · · · · · · · · · · ·

Disruption Scenario Modeling of Networks

Transit Stop Disruption

Dynamic Resilience

INDIRA-B project: INDIcators for Reliability and Variability of Bus Systems'

Résilience dynamique

Résilience dynamique

Résilience dynamique

Perspectives

Projet TIGA sur la mobilité intelligente de Rennes Métropole Proposition de recherche sur la « Résilience du réseau multimodal » Dépôt en Avril 2019.

Suite du projet INDIRA_B, projet franco-indien en construction

- partenaires académiques: IFSTTAR et IIT Delhi
- partenaires industriels : **DIMTS** et Bengalor ? RATP ? ???
 - Recherche d'un partenaire industriel français !

